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2 RANDOM PACKING AND RANDOM COVERING SEQUENCES
::. Clifton Dickerson Sutton

:

In a sequential packing problem, random objects are uniformly and independently selected
from some space. A selected object is either packed or rejected, depending on the distance
between it and the nearest object which has been previously packed. A saturated packing
br, is said to exist when it is no longer possible to pack any additional selections. The random

packing density is the average proportion of the space which is occupied by the packed objects
at saturation.

g

e Results concerning the time of the first rejection in a packing sequence are given in
LY . . .. .
:." Chapter 1. The accuracy of some common approximation formulas is investigated for several
! settings. The problems considered may be thought of as generalizations of the classical birthday
"y problem.
0]
"' Exact results concerning random packing densities are generally known only for some
. packing sequences in one-dimensional spaces. In Chapter 2, the packing densities of various
computer generated codes are examined. These stochastically constructed codes provide a con-
3 venient way to study packing in multidimensional spaces. Asymptotic approximation formulas
": are given for the packing densities which arise from several different coding schemes. In one
v special case considered, a new method is found for approximating a planar density. The result
s . . . . -
* obtained agrees closely with estimates obtained by others.
In Chapter 3 the distribution of the number of random selections needed to achieve a
W .. . . .
. saturated packing is considered. In each of the settings examined, the results are compared
w
N with analogous results from an associated random covering problem.
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Chapter 0

Introduction

Sequential packing and covering problems have been investigated by numerous au-
thors; however, there are quite a few interesting questions which have remained unan-
swered. Here some stopping rules arising in various packing and covering sequences are

examined, and some fresh results concerning their distributions are presented.

The basic packing problem can be briefly described as follows. Random objects are
sequentially selected from some space. A selected object is considered packed if it does
not overlap any of the previousiy packed objects, otherwise the object is rejected. The
selection process continues until it is no longer possiBle to pack any additional objects. The
chief problem is to determine how much of the space is covered by the terminal collection
of packed objects. So far. explicit solutions have been obtained only for packing sequences

on one-dimensional spaces.

Chapter 1 examines the time of the first rejection in packing sequences. The prob-
lems considered, which will be called collision problems, may be viewed as generalizations
of a familiar birthday problem where people are sequentially sampled at random until a
matching of birthdays occurs. Applying the usual simplifying assumptions, this simple
birthday setting may be modeled as follows. A sequence C;,Cs, - of independent selec-
tions are made from the space S = {1,2,---,n}, where n represents the number of days

in a year. The selections are made according to a uniform distribution, i.e.
P{C.’ = k} = n"

for 1 < k < n and for each i. Letting 7 count the number of selections needed to obtain
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2 Chapter 0. Introduction

the first duplication of outcomes, it is well known that for fixed t > 0

(0.1) }"{—\/1-2.—_>t}~e"2 as n — oo,
n

and (see [31]) that

(0.2) E‘[v-]~‘/?2l as n — oo.

A new result established in Chapter 1 yields, for this simple birthday setting, that
1
(0.3) P{7 > [n°]} ~ exp (—§n2°‘1) asn — oo

for 0 < a < 2/3. In other words (0.3) says that the common approximation formula (see

(14])
(0.4) P{r > k} = exp(—k?/2n),

which is suggested by (0.1), will hold reasonably well whenever k < n?/3 and n is suffi-
ciently large. A direct calculation in a related collision problem suggests that the equiva-
lence stated in (0.3) does not hold for values of o which are greater than or equal to the

upper bound 2/3.

Other settings for collision problems are also examined in Chapter 1. For the one-
dimensional cases of packing arcs of equal length on the discrete and continuous circles.
with a collision occurring if two arcs overlap, results similar to (0.1), (0.2), and (0.3) are
obtained. However, for collision problems in higher dimensional spaces only analogs of
(0.1) are proved exactly, with plausible arguments and simulation results used to provide

support for the approximation

(0.5) AGE %’

which seems to hold in a large number of cases. In (0.5), p is used to denote the probability
that two arbitrary random selections collide.
The time to the first collision is also investigated for several variations where arcs

of unequal iength are packed on the circle. These collision settings do not seem to have
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Chapter 0' Introduction 3

been previously considered by others. For cases where the arc lengths are i.i.d. randoin
variables, upper and lower bounds are obtained for P{r > k}. and results are given which

indicate that the approximation formula (0.5) is not applicable for these settings.

Random packing densities for various random coding schemes are investigated in
Chapter 2. Stochastically constructed codes provide a convenient way to study random
packing in high-dimensional spaces, and a few special cases yield limiting values for packing

densities which may be compared with analogous values obtained by others.

Itoh and Solomon [27] have studied the densities for cases where binary codewords are
randomly packed by Hamming distance. They obtained approximation formulas for the
densities in some of the cases which they investigated. In Section 2.2 a general approxima-
tion formula is proposed which not only does better than the approximations given in [27).
it also does reasonably well for several additional cases. Letting n denote the total number
of possible codewords and p be the probability that two arbitrary codewords collide, it is
found that the random packing densities appear to be asyvmptotically approximated by a

function of np which contains only one empirical constant.

Other sections in Chapter 2 examine random g-ary codes packed using various met-
rics. For the packing scheme discussed in Section 2.5, a two-dimensional analog of a
one-dimensional result of Mackenzie [36) is obtained. This new formula yields an approxi-
mation for a planar packing density which is in close agreement with estimates determined

in previous studies.

The total number of random selections required to achieve a saturated packing is
examined in the final chapter. Chapter 3 also considers the total number of selections
required to completely cover the space. In this variation, the random objects are allowed
to overlap and none of the selections are rejected, and it is of interest to determine how
many selections are required until each point of the space is covered by at least one object.
A few such covering results have been found by Flatto and several otlers; however. the
time to saturation does not seem to have been previously considered. It is found that the

average number of selections required for saturation exceeds the average number required
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4 Chapter 0. Introduction

for coverage in some settings. while the opposite is true in other cases. One easily proved.
yvet somewhat surprising result, is that for some packing sequences on continuous spaces

the expected number of selections required for saturation is infinite.




Chapter 1

The Time to the Initial Collision
of a Packing Sequence

1.1. Introduction

Let S be either a finite space, a k-dimensional unit torus (k € {1.2.---}), or the
surface of a sphere in E¥ (k € {2,3,---}), and suppose that points C; € S, C; € S.--- are
independently selected according to a uniform distribution. Thus if S is the finite space
{$1,82,--,8,}. then

P{Ci=s,}=n""
fori=1.2.---and 1< ;7 < n. If Sisinfinite then

P{C. € B} = % (i=1,2.--),

where | - | denotes Lebesgue measure and B is any measurable set.

Let i be a metricon S. Then for some specified é > 0, two points C, and C, are said
to collide provided that u(C;,C;) < 6. If this condition is not met, then the points are
said to be disjoint. A set of three or more points is said to be disjoint, or fairly packed, if
the points are pairwise disjoint. In the literature, a collision is sometimes called a match

or a coincidence.

Let C; A C; denote the event that C, and C, collide. If C; and C; are disjoint, write
C,vC,. Denoting Ule{C,} by C(7). write Ci AC(j) if Ci collides with at least one member
of C(j). Let p denote the probability that two arbitrary points collide.i.e. p = P{C,AC,}

(i # 7). Note that p will always be positive.
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\ 6  Chapter 1: The Time to the Initial Collision of a Packing Sequence
e
[ ~’
_5 Consider (,.C3.--- chosen independently and uniformly from S§. S, u. P, é and
X, {C.}2, will collectively be called a packing sequence. Define a stopping time 7 by
X
A
e {r=k}={#Ck-1)=k -1, C(k—1) is disjoint, Cx AC(k - 1)}.
!
: Thus 7 equals k if and only if Cy is involved in the first collision that occurs as the points
S
‘:’_“ C1,C,,- - are selected one after another. Furthermore, if 7 exceeds k, then the first &
o
N points of the sequence are pairwise disjoint. Using the terminology introduced above. it
WO
L can also be said that the first k points have been fairly packed whenever r exceeds k. For
N this reason 7 is called the time to the initial collision of a packing sequence.
4 I.\
<~ For certain choices of S. u. and §, 7 is a random variable for which some results are
S
f' . 3 .«
i known. For example. several varieties of what are commonly called birthday problems can
o be treated by suitably defining S, y, and é. In Sections 1.3, 1.4, 1.7,and 1.8 which follow,
q:_.
P some known results concerning 7 will be reviewed and some extensions and new results will
o
a7 be obtained. for some particular metric spaces. Simple applications will be mentioned,
:1.,‘
) and some examples will be presented. Sections 1.5 and 1.6 will examine some related
'7:.j problems for which not all of the criteria needed for a packing sequence as defined here
v : .
- are met. However before proceeding with any specific packing sequence. it is convenient
0.
i to derive first some results which are true for a large class of choices of (S, ) and &.
A 1.2. Sequences of Equivalent Points
=
:'f_ A packing sequence will be said to consist of equivalent points if the probability that
Ny
a randomly selected point collides with any given element of the space S is equal to the
"
Ca
N probability that two arbitrary points collide. That is, the sequence has equivalent points
-
R if for each i and for every s € S
» >y
- P{C, A s} = P{u(Ci,s) < 6} = p.
9
oY . . . .
\.: It will be seen in the next section that the packing sequence associated with the
N
o . . . .
_:- classical birthday problem consists of equivalent points. So do the remaining packing
- sequences of Section 1.3, and also those discussed in Sections 1.4 and 1.7. The first
o~
o
.
g
<y
‘J
N
G
Y
Y]
' ""‘f"'."'""‘f"""'f" e YT T A T Y Y T T, S N T A S S S VR SR I



X ~ ~- --- - - -I "’.."" .'..."‘, " 4 -4 - - - s o h.l-l - e ’.'.’}-‘-

(4
»
Y

e

S5ANON,
)

Section 1.2: Sequences of Equivalent Points 7

v
R

packing sequence discussed in Section 1.8 consists of equivalent points; however. it will
be shown that the alternative packing sequence for ternary n-tuples found in that section

does not.

T G

As a simple example of a packing sequence which does not consist of equivalent

P
(59

points. consider the one having § = {1,2.3.4.5.6,7}, u(z,y) = |z — y|. and é = 3. Here
P{C, A1} = P{C,AT} = 2. P{C, A2} = P{C, A6} = 4. and P{C; A3} = P{C, A4} =
P{C, A5} = 2. Since

IR
f . » P ¥ 3§
Y Q_.r.-

g+§5_29
7 7\7/) 49

it 15 clear that the sequence does not possess the equivalent points property that P{C, A

"7
A

.? Ev:{?.:,

s} = pforevery s € S. In both this example and the non-equivalent points case of Section

i

Ty b
g

1.5, it can be noted that the metric u creates a boundary eflect on the space S. If the

metric above is changed to

lz -yl iflz -yl <3
p(r.y) =
7-]r —y| otherwise

e

N R =

el

0

.
(A

in order to impose a torus quality on the points of §. then the packing sequence now

TANSS

consists of equivalent points. This is because for each s € §

¥

5
P{C,As}=p= 5

R4 AN ALY

LY

J The results presented in this section hold for any § > 0 and metric space (S, u) which

el

M
"X,

provide a packing sequence of equivalent points. The corresponding uniform probability

L

measure P will always be as specified in Section 1.1.

A lower bound for P{r > k} is easy to establish.

Proposition 1.1. For k > 2,

Mol -sp) ifp< (k=1)71

Y
®
. »
0 otherwise I
#
A

P{r>k}2{

At N N R N e A )
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Proof. Using Boole's inequality
k. P{ir=k|r>k-1}=P{Ci ACLUC2AC,U-- - UCr  ACr T >k=~1)}
158 k-1
VY
> <Y P{C,AC T>k=-1}
=1
k~1
5 =Y P{C, ACy)
~ )=1
::: = (k - l)p
™ Thus
Y, P{r>k}=P{->k-1}- P{r =k}
|4
-l. =(1-P{r=k|r>k-1})P{r>k-1)}
i 2 (1= (k=-1)p)P{r > k~1}.
> For p < (k - 1)~!. simple induction yields
o
v
: P{r >k} 2 (1- (k= 1)pi(1 = (k= 2)p)---(1 = p)P{r > 1}.
4
" Noting that P{r > 1} = 1 completes the proof. |
._: It can be scen by examining (1.11) of the next section that this lower bound is
‘:: sharp for the sequence of the simple birthday problem. Thus. on the average. the waiting
time for a coincidence will tend to be at least as long for any other packing sequence
3 consisting of equivalent points and having the same value for p (equal to n~!) as it is for
". the corresponding simple birthday sequence.
. Since Hf-_-:(l ~ ]p) becomes cumbersome to compute for large k, it i< desirable to
- establish a more convenient lower bound. Lemma 1.1 gives a lower bound which can be
; easily used to establish asymptotic results concerning the distribution of r.
'
), Lemma 1.1. For any real numbers n and a satisfying n > 3 and a < £, and any !
E: integer k such that 2 < k < n, '
e
4
2 kHl (1 i) > {w”"(l —kn=°) ifk < n° ’
=1 n 0 otherwise
J A
-: (]

i‘n-‘-l...;
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Section 1.2: Sequences of Equivalent Points 9

Proof. The case for k > n® is trivial. For k < n® observe that

T
n nk=l(n — k)[(n - k)’

=1

Judicious application of the double inequality
(1.1) V2715~V < I'(z) < oxzt-12e-r+ 1

to the gamma functions above yields

k-1 . ~n+k-1/2
j k ) - 1
1 (1 B F> g (1 - 5) xP ('k 12(n — k)) '

=1

Hence it suffices to show

k -n+k-1/2 k \—1 kz 1
1-~ - = ko —— >
( n) (1 ne ) e""(zn 12(n—k)>-1

or equivalently

1 k! F\7D k2 1
. -k+=)1 - - - —_— k- —>0.
(1.2) (n + 2) og (1 n) + log (1 n°) + 35 k Oy > ¢

Since the expansion

log(l—i—t) =1+ t2+%t3+ e (lth< 1)
vields the inequality
(1.3) log(1-~1)"' > i—l—t"' (0<t<1l, M>1),
m=1 m

it follows that the left side of (1.2) exceeds

k1 (k\? kK k? 1
“"“(H*E(Z))+n—°+fﬁ_k'12(n-k)

(1.4)

Thus it suffices to show that (1.4) is greater than zero, or equivalently that

k k2
(1.5) 12(n - k)=~ (1_2712-0) > 1.

\‘.q*-*-*' v-- -'

> LTS ~ N LN <Ay .
A\ AN AN ] o ‘&. () Ch m L W ML L £ ,. ™, A

[ W N ) i N WA B .. ".J "i,\ l,..‘nﬁlg‘l ’ 0?




t:} 10 Chapter 1: The Time to the Initial Collision of a Packing Sequence

But this is indeed the case since the left side of (1.5) exceeds

o 3a-2
- 2 nsc-
a
- {1~
12(n - n®) = ( > )
30 2
=24(n""% -1
-1 (1- )
>24(n‘/3-1)( )
> 12(3'% - 1)
> 1. ]
The corollary below follows immediately from Proposition 1.1 and Lemma 1.1.
Corollary. For a real and k an integer. if p. a and k satisfy p < :1-, o< % and k > 2.
then
$P(1— kp) ifk
- £k < pma
P{r>ky{>€ k") ifk<p
>0 otherwise.
An alternative lower bound for H]__l (1-jp) can be obtained by a different technique.
Although this lower bound is tighter than the one found above, note that the nontrivial
portion still requires that k does not exceed n?/3,
Lemma 1.2. For any n > 3 and any integer k > 2,
2
5 [(-2) > () wnen
::: 1=1 >0 otherwise.
-
Y,

Proof. Since

log(1—1) > -t ~ 1

for0 <t < %, and since ;f < % for 1 € j € k~1 whenever the conditions of the hypothesis




Section 1.2: Sequences of Equivaleut Points 11

are met and k < n?/3, it follows that if k < n?/3 then

ﬁ(l—%) = exp ki:llog(l—%)

=1 =1
< ( i (i)}
> exp Z(———(—))
=1 n n
_ (k—1)k (k= 1)k(2k - 1)
P VT T T 6n?
k2 ks
>exp{—ﬁ—3—n§}.

Then since e* > 1 —t for all t < 3 and since 3L:,- < %, it follows from above that if

k-l - 2 3
H(l_l) >e—%=(1-k_). '
n 3n?

=1

Corollary. For any p < % and any integer k > 2,

k < n?/3 then

X2
-5 Py _ 113,2) -2/3
P{r>k}!>e (1-3Kk%p?) ifk<p

>0 otherwise.
It is also possible to establish an upper bound for P{r > k}.

Proposition 1.2. Let A be the largest integer m satisfying

(2m? - 5m + 1 m - 1)
)p+( P

< 1.
4 24 s
Then
-0 fr2<k< M
P{r>k}<{e i ores=
e~ My otherwise.

Proof. Since P{C, A C,,Cy A C,} = p? if the set {r,s} is not identical to the set

{t, u}, it follows by a well-known inclusion-exclusion argument that for k 2 3,

P{r>k}=P n CivC,

1<i< <k
<1-Y P{C.ACY+ Y P{CAC.CAC
r<s r<s,t<u.s<u

{ra}#{tu}
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12  Chapter 1. The Time to the Initial Collision of a Packing Sequence

. (1.6) =1-—(§>p+ ((g)>p2.

N -1)2
: Now truncating the Tavlor expansion of e~ e yields
- (k=1? (k=1)% (k-1)* (k - 1)8 10
b~ 1.7 - P 1~ 2 - 3 k < _.
N (1.7) I 5Pt ——F P a5 P <1+ >

The condition that (1.6) is less than or equal to the right side of (1.7) simplifies to

: (2k2 = 5k + 1) (k-1)°,
> 8 < 1.
(1.8) 3 p+ 2z P <

Hence it follows that

' —1)®
: P{T>k}<e'kil”
,4 whenever (1.8)istrueand 3 <k <1+ ,/%. Over k > 2, the left side of (1.8) increases
) with k£ and is not bounded from above. so that the existence of a unique Af is guaranteed.
N Furthermore, whatever pis, 2 < M < 14 ,/1;9. The proposed upper bound has now been
- established for 3 < k < M. For k > M it is trivial that
. -112
: P{r>k}<P{r>AM}<e M,
':' For k = 2 note that
: P{r>2}=1-p<e??, |
o
x Corollary. Let
7 ifp2 iy
o M(p) = 1/5
- (p) [(-";}) ] otherwise.
v
. Then
/]

_132
Pir> k) < {e’”"l” for 2 < k < M(p)
2
e'M“i P otherwise.
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1/5
roof. Note that Af(p) = min - AL . Hence
Proof. Note that M (p) = min{[p 1/2][(;2)/1}}1

(2m? - 5m + 1)p+ (m - 1)5p2
4 24

m=M(p)+1
< (m - 1)2p+ (m - 1)5p2
- 2 24
m=M(p)+1

HP (p
< + p 2
=75 r 23 r4

<1,

and so M(p) + 1 does not exceed the value M specified in the hypothesis of Proposition
1.2. Thus it follows from the proposition, and the fact that P{r > k} is nonincreasing

with k. that the proposed upper bound is valid. 1

Proposition 1.3. For fixed t > 0,

T 2
P >tp~e as plo.
{\/2/1’ } )

Proof. For p sufficiently small, the preceding coroliary may be used to attain the

following upper bound.

> t} = P{r > [tvV2/p]}

< exp {-%([h/%] - l)zp}
< exp{-t? — 4t\/p/2}.

P{\/;ﬁ

Similarly, by the corollary following Lemma 1.1 (with a = %).

p { \/;ﬁ > t} > exp{—1* - V2t p'/5}.

These two bounds, plus the sandwiching theorem for limits, yield

im 2ATVP2>

p—0+ e~

as required. ]
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14  Chapter 1: The Time to the Initial Collision of a Packing Sequence

It should be noted that for the special case of the simple birthday problem the result given
in the previous proposition is known to Diaconis [9] and probably others who have studied

the problem.

The result stated in the next proposition is of a different form than the more common
types of collision problem results, as many previous results treat P{r > k} for either k
fixed or k being constrained to be of the order O(p~?/2). The restriction that a be less
than % arises from a similar restriction in Proposition 1.2. In Sections 1.3 and 1.4, where
the distribution of r is known exactly. the following results will be strengthened to hold
forall0 < a < % For the special case of a = % this result mayv be obtained for numerous
settings from a Poisson limit of Silverman and Brown {32] Their results. which arise {from
a method involving the U-statistics of Hoeffding [21], will be discussed further in the next

section.

Proposition 1.4. For0 < a < %

1
P{T>E1>‘°B}~eXP(—§p“’°) as plo.

Proof. Note that

1_2- 1/5 o s (121/5)_ 1
p? - p2/5

>0

so that [p~°] must be less than or equal to [( ’;%)‘/5]. Hence, by the corollary to Proposition

1.2,
lim sup Pir>ol) lim sup exp [lpl-zo it L 1)23’]
p—0+ exXp(—3p1=2%) T o+ 2 2

1 -a __ 2 2
< limsupexp |=p'~%* ~ (1———)—p]
p—0+ 2 2

limsupexp(2p'~® - 2p)
p—0+

= 1.
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-
o'
Also. by the corollary following Lemma 1.1,

0

o~

-3 : P{>[pr°]} s ~ay,1/2 (1 1-2 [p=°l? )
> liminf ———2% > liminf(1 - [p~%)p"/?*)exp | = -
N o P12 2 iminf(1 - [p™°]p"" ) exp { 3P 5P
= 1 1

> liminf(1 — p'/?~%)exp(=p! =2 — Zpl=2o)
p—0* 2 2

b =1,

::: so that it may now be concluded that

4 . P{r -a
- lim —————{ >1[1;_23,} =1 ]

) p—0* exp(—gp!~22)
-

~

X Next a lower bound for E{r] will be given. A similar upper bound for E{r] cannot be
S
o

produced (by the author) in this general setting since a sufficiently tight upper bound for
P{r > k} has not been determined over a large enough range of k. In subsequent sections.
where specific metric spaces are considered, nice upper bounds for E[r] are found in those

cases where the distribution of 7 is known precisely.

Theorem 1.1. Let a € (3.3). Thenforp< 2 ~a

_7_r__ a~1
E[r]>‘/2p po .

S"-’\)\) ;..‘..I L3 AT ,-5)";

> T . "Lwer bound is asvmptotically equivalent to 1/'1% asp | 0.

o

o) Proof. Since 7 is a nonnegative, integral-valued random variable, it follows from a
L. well-known argument that

o

> E[r] = Z P{r > k}.

:‘ k=0
o However, since 7 > 2 with probability 1, it is also true that

n‘\' oo

N E['r]:?-}-ZP{'r)k},
N k=2

“

o and so by the corollary following Lemma 1.1

U4

o

' 2 B
b E[r]>2+ Y e TP(i-kp®)

M k=2

»
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16  Chapter 1: The Time to the Initial Collision of a Packing Sequence

1'2 . L. . .
Since e~ TP(1 — zp®) is a positive, decreasing function of z on (2,p~®),

P°1-1 ke P
Elr]>2+ Z / e TP(1- zp®)dz + / e~ TP(1 - zp?)dz
k=2 k fr-°])

P 2
=2+/ e~ TP(1 - p°)dz.
2

‘2
Since €~ 7P(1—zp®) is less than 1 on (0, 1) and is negative on (p~%, oc), it further follows
that
© _2
E[r]> / e~ 7P(1 ~ zp®)dx
0

-— 3 1
- 2p pl-a
as claimed. Also note that

{_ - pa—l 2
im Y2 = lim (1—;)""/2 —)

p.-04 / _{_p p—0+ s

1.3. The Birthday Surﬁ;'ise Revisited

]
—
-

Let S ={1.2.---.n} and let

] if |z -yl <
uz.y) =
n— |z —y| otherwise.

[SIE]

Recalling that é represents the minimum separation distance for disjoint points. consider
first the simple case where § is taken to be 1. Then two points C; € S and C; € S will
collide if and only if u(C,,C,) = 0, a condition requiring that C; and C; be the same

element from S.

The sequential selection of Cy,C3, - from § may be thought of as dropping balls
labeled C;.Cs, - - - into cells labeled 1,2,---,n. For each drop, the probability of the ball
landing in cell j is just % (j =1,2,---,n). Also the probability that two arbitrary points
C, and C; collide is % since whatever cell the ball C; falls into there exists a 1 in n chance

that C, will occupy the same cell. Clearly, the packing sequence consists of equivalent

points.
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The initial collision in the sequence will occur the first time a dropped ball lands in

.": a cell which is already occupied by a previously allocated ball, i.e. 7 counts the number of
¥
o drops required to produce the first double occupancy. Problems concerning the distribu-
N . . .
’ tion of r are generally referred to as birthday problems. A common example. sometimes
~ . . .
™~ called the birthday surprise, is to determine the smallest number of people needed in order
-
[~ for there to be at least an even chance that some pair of them will share the same birthday,
o i.e. for n = 365 find the smallest value of & such that P{r > k} < 1.
' Some basic aspects of birthday problems are discussed in [14]. and numerous authors
1 ‘ . - . . . . .
“;: have investigated extensions and generalizations of the simple versions of the problem.
e
4 McKinney [37] calculates the probability that at least r out of n randomly selected people
. have the same birthday, and Klamkin and Newman [31] determine, asymptotically. the
expected number of people needed in order for r of them to have the same birthday. If
e there are n days in the vear, then the expected number needed is asvmptotically equivalent
e
- to
' 1 -
o CNAS (1 + —) n(1-%)
N r
. . . . .
™ as n tends to infinity. For the case of r = 2. their theorem vields the result
»
nw
\ Elr]~ 5 @ n—ox
Ny where. as before, 7 is the time of the first match. Blaum et al. [6] present more accurate
’,
S asvmptotic estimates than tt. e given in {31]. and they also consider the number of people
':-_,' needed in order to have k different birthdays occur at least r times each. Several other
.\ variations are to be discussed in a forthcoming book by Diaconis and Mosteller, among
‘RS
» them are problems in which birthdays do not occur with equal likelihood, multivariate
- versions, and “near” coincidences. Among their findings in each of the settings investigated
.‘: is an approximation for the number of people needed in order for there to be an even chance
-q
'.: for a match.
.I
X Now consider the case where § equals 2. If the n cells are arranged in a circle.
o and balls are dropped into them at random. then 7 counts the number of balls required
A
A
AJ
e
N
e
\.

.- . Cm- e . Ce - w- e ar e v s, iR e, m e - -
TR S .N-,‘ ._._" ST A -..‘_.l. PR ‘.',', on '*. .4.‘,.__\-\ -“,.‘,sxf. -5.-,\\-,\ s

£ &




e i AR A S S PR MRt At AN P A rS A A A AR A SA AN S AA YA SA LA SN A AR A A SASIAE EA S N

"'-.,
x
o
A 18  Chapter 1: The Time to the Initial Collision of a Packing Sequence
.
'S
o to obtain the first occurrence of either anyv cell being doubly occupied or of any pair of
~ adjacent cells being singly occupied. Clearly
: 3.
:. p=P{C,/\CJ}=;1- (t # 7).
_.. since whatever cell C; occupies there will be a collision if C, lands in the same cell or
:’_\ either of the two cells adjacent to it.
7
::: Another way to view the situation is as follows. Consider a circle of circumference
. n which is divided into n segments. each segment being of arc length 1. The segments
R . are labeled in order 1,2,---.n so that the nth segment is adjacent to the 1st segment. If
_ " C, = J (# n) then place an arc of length 2 on the circle so that it covers exactly the jth
‘ : and (7 4 1)th segments. If C; = n then let an arc cover the nth and 1st segments. A
: collision will occur whenever any portion of two arcs are overlapping.
s,
. E’ This circular representation is also convenient if § € {3.4,---}. Ateachstep.ifC, =
; then cover the segments labeled j, j & 1,---,7 % (é — 1) with an arc of length 6, where & :
: stands for addition modulo n. The initial collision occurs the first time any portion of the
,'._ circle becomes twice covered. Thus 7 equals k if the first £ — 1 arcs are pairwise disjoint
:':'_ and the kth arc overlaps at least one of the first £ — 1 arcs. Note that u(C,.C,) = 0 if
- C, = C,. Otherwise u(C,;.C,) is just one greater than the number of segments which lie
:: between the C,th segment and the C,th segment. where the shortest possible portion of
f' the circle connecting the two segments is considered.
: '. For convenience, in this metric space the stopping time T will be written 75, where
- 6 identifies the minimum separation for disjoint points and n is the number of elements
' '\ in S. For example. P{7736s > k} is just the probability, under reasonable simplifying as-
D sumptions, that in a group of k people sampled at random, no pair of them have birthdays
X less than a week apart. This type of birthday problem seems to have been investigated
first by Abramson and Moser [1]. and subsequent work on extensions has been done by
:‘ Sevast'vanov [48] and Diaconis {9] among others.
. For another example. consider the packing problem discussed in [43] and [36]. There
>
N
N
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::j Section 1.3. The Birthday Surprise Revisited 19
)
‘ a line of integral length n is filled sequentially at random with nonoverlapping intervals of
‘ »
. integral length a, their end points having integer coordinates. If a selected interval were to
2,
:;; overlap one which has already been packed, then the interval is rejected and another one
S is selected at random. The process continues until it is no longer possible to fairly pack
' another interval on the line. Disregarding end effects, the event {7, ., > k} corresponds to
'.";" having none of the first &k intervals rejected.
For ¢ € {1,2,---}, Tcn is a random variable having {2,3,---,[2] + 1} as its set of
- possible outcomes. P{r., > k} = 1 for all integers k < 2 and P{r.. > k} = 0 for all
- integers k > [2]. For 2 < k < [2]. Abramson and Moser 1] proved that
v
- k-1 /n-k(c-1)-1
) Pren > k} = Lntl_)( gcc— 1 ) )
o p (1.9) )
< _(n=kle=1)=1)n=klc=1)=2)---(n=kic—1)= (k=1
Ve - nk-1 '
7 . :
;. An equivalent form is
s »
hol t= k(c=1)+
“x (1.10) Plr.n >k} = n [1 - (—(—;2—'1)] .
J': =1
N, Setting ¢ equal to 1 yields
“I
’ 1 2 k-1
‘ (1.11) P{r,‘n>k}=(1-—> (1——)-~<1— ) (k=2.---.n).
"~ n n n
X
‘- L. . .
- a well-known expression for the probabilities of the basic birthdayv problem.
- The major advancement contained in this section is given by Proposition 1.10, whicl
7, states that for 0 < & < %
e
L4
:': n o 1 n 2a~1
N Pdr ~exp|-= as n — oc.
v {°'">[K2c—1) ]]} P 2(2c—1>
&,
v Note that this result implies that, for large n, only for values of k near \/n will
" P{r.n > k} be something other than almost zero or almost one, a fact which is known by
::-; Diaconis [9] and perhaps others who have investigated the birthday problem. However,
note that the result also provides a way of estimating what the precise value of P{r.n > k}
‘-
'_\ is when it is close to 0 or 1. provided that a is not too large.
7
‘.
f‘
’
g4
-
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LY
o
' Letting the gqth quantile of 7. ,. denoted by £, be defined as the smallest integer §
j satisfving P{r < £} > gq. the above proposition suggests that £, should be reasonably
:: approximated by
2
~ . 2n 1
= l
) € [\/(2c-1)og(1—q)
& . 1/3 .
..:;: ifg<1-exp —]5 (2;‘_1) . It turns out, however, that the approximation is rather
5.: good for even larger ¢. This is demonstrated by the following example. Let ¢ = 2 and
1/3 .
n = 3000. Then 1 — exp [—% (2—:‘_—1) ] =1- 7% =.993. A comparison of £, and &, for
n various values of ¢ is presented below.
A8
\
a”, -
'r: q §q €
) 0.5 38 38
- 0.9 68 68
! 0.99 96 96
oy 0.993 99 100
. .
0.995 103 103
‘ 0.999 117 118
0.9995 122 124
0.9999 134 136
. L
o 1-10-° 150 152
. 1-107 176 180
A
-’ 1-10"% 199 204
- It is interesting to note that although the difference between 122 and 124 seems slight,
-f.j the difference between P{r > 122} = 4.88 x 104 and P{r > 124} = 3.77 x 104 is more
- pronounced. Similarly, the difference between 199 and 204 does not appear to be nearly as
x
A drastic as the difference between P{r > 199} = 9.3x10~%and P{r > 204} = 3.1 x1071°.
:'_: For the special case of a = % the result of Proposition 1.10 has been obtained by
several investigators. These include Sevast'yanov (48], Silverman and Brown [52], Diaconis '
‘S [9]. and Stein [56]. In fact, for this special case it is possible to state more powerful results
&N
B »
N’
K™,
% .
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Section 1.3: The Birthday Surprise Revisited 21

LN N

than that which is furnished by Proposition 1.10. These more powerful results are generally

known as Poisson approximations.

Consider the basic birthday problem where there are k people, n days in a vear, and
it is considered that a match occurs whenever a pair of people have a common birthday.
For this setting the Poisson approximation loosely says that if (’;)3—1 is approximately equal
to some fixed value A and n is sufficiently large. then

e\

P{# matches = j} = 7

It is not even necessary to require that all birthdavs occur with equal likelihood. although
some restrictions on the probabilities are needed. Note that since k is required to be of
the order O(nl/?). tane j = 0 version of the Poisson approximation is indeed similar to
the ¢ = % case of Proposition 1.10. Similar Poisson approximations can be obtained in

collision settings other than the one discussed here.

Now methods similar to those of the previous section will be used to develop bounds
for P{r.. > k}. These bounds will in turn be used to establish limit results for the

distribution of 7. ,. including Proposition 1.10.

It follows from (1.10) that
= k(c—1)+j
. > k)= - —1}].
(1.12) log P{ren > k) ;log[l ( . )]
The inequality

log(l-z)< -z (0<zT<1)

may be applied to each of the terms on the right hand side of (1.12), resulting in

k-1 .
log P{ten > k} < Z [— (ﬂc—_;llil)]

=1

(k= 1)k(2c =~ 1)

2n

Thus the following proposition is immediately established.

by
v
\

,,'. » ,, "v-'. ’ -"’ 'I. {-"d‘..ﬁ’\‘-"-_' \1 .-' ﬁp . -'- V *- ..l 5~r."!~( ~. rq‘ f‘ L r\ ) ' r ""
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“ Ve v & "

Proposition 1.5.

b (k=1 ki2c—1
, P{ron> k)< e —F— =2, [[2

Noting that p = Q‘ﬂ'———” the next proposition is just a special case of the corollary

following Lemma 1.1.

Proposition 1.6. For a real and k an integer, if n > 3(2¢ - 1). a < % and & > 2. N

then

> [1-k(252) T exp (-1 251 ik < (52)°

P{r.n > k} {

>0 otherwise.

An alternative lower bound is provided by the following proposition.

Proposition 1.7. Let ¢. n. and k be integers such that 2 < ¢ < 1728, n > ¢%, and

k> 2. Let 4

/3 . ny1/3 X

‘ (%)2 ifc < 1+('5) .
/ M(c.n) = .
y o otherwise. i
2(c-1) . .

k k3(2c-1) Lo
P{ren > k) { > (1 = o) o0 (- metkitty) ik < M(em)
>0 otherwise.

Proof. Consider & < M{c.n) since the other case is trivial.

For convenience let 4 denote (¢ — 1). Note that

M(e.n) = min {(-;-)m, %}

at

1

L]

. so that

M3? 4 4M < n,

B

or equivalently

M < (n—~M)?3

Therefore. for k < M(c.n)

k < (n-~k)?3.
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§:

It follows from (1.9) and (1.1) that
-,
'y
: I'(n-kv)
n k} =
ey Piren > k) nk=1(n — ky ~ k)[(n - kv - k)
N S (n — ky)"=F =12 exp(~n + kv)
n*=l(n — ky ~ k)= vkt 2exp(—n + kv + k + prseoy)

:f-.' (&-1)] T n—k~v—k+1/2

1 ( 1 )

. = 1--— k

A ( (i‘:)) - ()

X ex k -———l———>

= P -k -8

~ The inequality
g -\ 1 -1 -1

s (1 - ;) >e (z>1)

» applied to the expression above vields
- k “ntkvrk-1/2 (k - 1)ky 1
: P> 0> [1- (75 o (-5 )
-

L It now suffices to show that if k < (n — 1k)?/3 then

EEE . ( k -nt+ky+k-1/2 . k ~|-l

7 s (n = k977

¢ (k?( v+ 1) (k= 1)k~ 1 )

X exp - -k .
2(n — kv) (n—k4) 12(n — kv — k)

j exceeds 1, or equivalently that

-"

%

(n—ky—k+ S)log [1 = —~ ]“1+1o [1-——k—]
n—Ky - 2 og —(Tl—k‘)) g (n—k7)2/3

=

_ k2(27+1)_(k—1)k7_k_ 1

-, (n - kv) (n = k) 12(n - ky - k)
-.-'_. is greater than 0. By (1.3) the above expression exceeds

‘.

- k k2 k k(23 +1) (k= 1ky
3 “'kV‘”[m-kw+2m—kﬂ4 kB An—ky)  (a- k)
- S S—

by 12(n - ky - k)

2. k 1

) P A O Y _ _ 1.2 N/
o = g (TR = R 2 e T

k 1

o > — - k)3 - k2 B

:', ’2(n-k7)[( ?) I- 12(n - ky — k)

1

X

"

K

']

4
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E: 24  Chapter 1: The Time to the Initial Collision of a Packing Sequence

Therefore. it suffices to show :

k s -1
—_—  An-—ky) k> ———
2(n—k7)2[2(n 1) I> 12(n — kv - k)’
or equivalently 3
6(n — kv - k)k
(1.13) ——(;—_-%)T)—[Q(n—k-y)‘/a-kzj> 1.

Now for all allowable values of n, k and ~,

6(n—k'~—k)k_6[l_ k k
(n—ky)2  — (ﬂ—k“/)] ["-k’r}

(-2 ()

* Py ®

and
[2(n = k9)*% - K] 2 (n — ky)*/®

> (n = n2/34)4/3

= n¥/3(1 — yn=1/3)/3

4/3 _ 1 4/3 K

2" (1 c) K

n\4/3 A

= (2) :

> nc'1/3, E

so that the left side of (1.13) exceeds ::
¢

12(c™ 13 - 2c"'°/3). 3

)

For 2 < ¢ < 1728 this expression is greater than 1 as required to complete the proof. (]

Proposition 1.8. The lower bound of Proposition 1.7 is greater than or equal to

the lower bound of Proposition 1.6 in all cases where both propositions are applicable.

Proof. It suffices to show that

[1 k ] ( k%(2¢ - 1) ) '
T m—kem 1R TP\ T 2n - k(e 1)) ]

> [1 _k (2«:7-1- 1)2/3} exp (_52_(2;‘_1)> ,

VP emply*pr A . ; . - , -
Aﬁﬁ-ﬂﬁ{'ﬂfbfm%ﬁ:;};} . -"h A . "" t.'\. L M R ., f'r IR O OO MM M X iy -'.‘.
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N
o
or equivalently that b
S
k k3(c —1)(2¢ - 1 2c—1\*"? )
(1.14) [1.-— exp (— ( N ) >1-k ¢ , ~
(n = k(c—-1))%3 2n(n — k(c - 1)) n -
for all ¢, n. and k which satisfy the hypotheses of both propositions and are such that ’i-
k< (k—tr)”:’. Letting v denote ¢ — 1, the left side of (1.14) exceeds

[1_ k ] [ ‘k37(27+1)] o1- k _k3-,v(2‘7+1)
(n~ k)23 2n(n - ky) (n-ky)¥3  2n(n-ky)’

Hence it suffices to show that

. (2~, +1\*® k k3y(27 + 1)
n = (n-kv)23 7 2n(n-ky)

The above inequality will be true if

3 /24 +1\%° 1
1.15 il >
(113) 4( n ) = (n - ky)23

and
(1.16) 1 2~,+1>2/"> kv (25 + 1)
' 4 n = 2n(n-kv)’

Now (1.15) is true if and only if

kv(27 +1)%/3 2/3 8
n S@ D - SEGy T

which holds since
ky(2y+ 123 4

n n1/3<1

and
8

2/3 |, _
(29+1) [1 37

(27 + 1)} > 3%3 {1 - i] > 1.

Also, (1.16) holds whenever

1/3
1(_n_ (1_1)21.
2k \ 2y +1 ke

To complete the proof note that the left side above exceeds

1 [n!/3 1/7+1
A I—@v+ -1 s o [ o2y + 1) - 1)
2 v 2 v
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26  Chapter 1: The Time to the Initial Collision of a Packing Sequence

which is greater than 1 whatever ¥ € {1.2,-- -} may be. (]
The following proposition is just a special case of Proposition 1.3.

Proposition 1.9. For fixed t > 0,

2
P{Tc.n/ 2C:ll>t}~e"2 as n — oc.

Since the upper bound furnished by Proposition 1.5 is valid over a larger range than
is the upper bound given by Proposition 1.2, the result given in Proposition 1.4 may now
be extended over a larger range as well. The proof of the following proposition is omitted

since it is entirely similar to the proof of Proposition 1.4.

Proposition 1.10. for0 < a < %,

s [() T} oo A () ™) o vmm

In order to investigate the accuracy of the other formulas presented thus far in this
section. consider as an example the simple birthday problem where ¢ equals 1 and n equals
365. (1.11) becomes

k=1 .
(1.17) P{raes > k} = [] (1 - ﬁ) (k
1=1
Proposition 1.5 gives
(k=1)k

(1.18) P{ri365 >k} <e” 7% (k=2,-.-,363)

and Proposition 1.6 provides

i2 k
M (1-%) (k=2,--.50
(1.19) P{rss >k} ¢ (1-5) (k=2 )

>0 (k > 51).

Proposition 1.9 suggests the often used approximation,

2

(1.20) P{ri365 > k} = e~ 7%,

Below the right hand sides of (1.17), (1.18), (1.19), and (1.20) are compared for several

values of k.

. - - - - - -~ L]
“p {V g .P \ ‘.' J'f,‘( . -F -f‘.-f' W f " d"\.' o d‘\f Ay {' LA 4 -r . I _rr‘_r~¢..r\ W
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Section 1.3: The Birthday Surprise Revisited 27

lower bound exact prob. upper bound approx.

k (1.19) (1.17) (1.18) (1.20)
5 0.872 0.973 0.973 0.966
10 0.701 0.883 0.884 0.872
20 0.351 0.589 0.594 0.578
30 0.120 0.294 0.304 0.291
40 0.024 0.109 0.118 0.112
50 6.4 x 10~ 0.030 0.035 0.033
60 0 0.006 0.008 0.007

It can be seen above that the upper bound is reasonably tight, but that the lower
bound is not. It may also be observed that the approximation given by (1.20) is neither
an upper bound nor a lower bound. It underestimates the true probability for small values

of k, and overestimates for larger k.

Putting ¢ equal to 7 and proceeding like before vields the following results.

k-1

{(1.21) P{rr365 > k} = (:&TSI)_“_'Y H(365—6k ~7) (k=2.--..52),
1=1
(1.22) P{rr36s > k} < e~ (k=2.-...52),

13k k1)
——

e~ (1-g53) (k=2.---.9)

(1.23) P{T7‘365 > k} >
0 (k =10, ---,52)
and
2
(1.24) P{T7'365 > k} ~ e'%'.

In addition. Proposition 1.7 provides the alternate lower bound

13k2
. k =9 ...
e~ [(30-13F) (1 - Geoer? 3> (k=2.---,30)
0 (k=31.---.52).

{1.23) P{T‘-v365 > k} >

A comparison of these results is presented below.

I AT A AT T TR S

3
3

-

RN Y e

RN g

g

LR
L L]

N T




st P R it e ) gt Tiiet Sl APASR STl bt 004 0eS gt b e tnt byt Aot At AR AR AL O DO p R h S ) A )

N

X ) 28  Chapter 1. The Time to the Initial Collision of a Packing Sequence

4

N
o

>

simple improved exact upper

_::: lower bound Jlower bound  probability bound approx.

. k (1.23) (1.25) (1.21) (1.22) (1.24)

e
L 3 0.606 0.794 0.896 0.899 0.852
x 5 0.320 0.552 0.689 0.700 0.641
o~
10 0 0.093 0.171 0.201 0.168

.\‘

. 20 0 1.2x10°% 23x107* 12x10"? 8.1x10"*

30 0 1.4x 1071 23x1071° 1.9x107" 1.1x107°

::: Observe that the upper bound again outperforms the lower bounds. and also that
I~

N the approximation formula behaves similar to the one in the previous example. It is
N interesting to note that as poor as the simple lower bound of Proposition 1.6 (or equiv-
o

i: alently of the corollary following Lemma 1.1) appears to be. it is tight enough to help
- establish the asymptotic formula for E[r] stated in Theorem 1.2, which follows. The
‘. looseness of the lower bound arises from the fact that the linear factor [1 - k (2‘—:’-)0]
': severelv overcompensates for the tail probabilities decaying faster than the exponential
L) .

- factor exp (-k“?;—:”).

‘-

- Lower bounds for the exact probabilities in the two examples above may also be
N

N produced from the corollary following Lemma 1.2. The values obtained (which are not
N reported here) are at least as good as those given by (1.19) and (1.23) for all values of k:
- however, while the values gotten from the corollary are better than those given by (1.23)
- for some values of k. they are worse for other values of k.

-~ :

Now a result for the mean will be derived using previous results for the distribution !
of 7.

’.

'. . . . . v

v;. Theorem 1.2. For a packing sequence consisting of equivalent points, if
":

A (k=1)?
X P{ir>k}<e 7 °
o

"
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Section 1.3 The Birthday Surprise Revisited 29

E[r]~1/g; as p|loO.

[

(1.26) lim £
p—0* /L
2p

Recalling from the proof of Theorem 1.1 that

for k > 2. then

Proof. By Theorem 1.1

—

> 1.

Elr] = 2+§:P{r > k).

k=2

it follows that if P{r > k} < exp [—“—'2”-211] then

A
=]

lim E[r] (2*2‘:::1‘_“/2’)

p—0+ % T p—0+ ES

]
=
<3

8
[}
!

k=1
2p [ _¢2
< lim _p/ e” TPdr
p—0* T Jo
= lim 1
p—0*
= 1.
This result and (1.26) together imply
E
lim, [:] =1
p—0 /i_p
as required to complete the proof. ]

=
Corollary. E{rcnl ~ /39y as n— x.

Another method may also be used to obtain an asymptotic result concerning Elrenl.

Asvmptotic results for the mean are also found in [6] and [31].

Let the sequence of random variables {r,}7_, be defined by

@,
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30  Chapter 1. The Time to the Initial Collision of a Packing Sequence

It follows from Proposition 1.5. Proposition 1.6 and calculus that for any « > 0
lim P{r. > a} = e’
n

where 9 = 3-’2‘—‘ Hence 7, converges in iaw to a random variable liaving Maxweil's

distribution. Since
lim sup/ r.dP
aT> n Jlrazal
. 3 o
lim sup | aexp (—02 + =._ Z) + / e dr
-2k . . \/H n (a_ﬁ]

3a o
lim | aex (—o2 + —) +/ e ds
a—x ( P \/5 {

a-%)
0.

IA

the random variabies v are aiso uniformly integrable. Thus it now follows i see 137 that
E{r.] converges to the mean of Maxwell's distribution. i.e.

oc
2 =
Eln~V3r. ~—-/ e dr = | [ ——
0

TV 22e -1y

1.4. Random Arcs On a Circle

In the setting of the previous section. if ¢ is taken to be very large and n considerah]y
larger. then the packing sequence of placing arcs of length ¢ uniformly on a circle of length
n so that their endpoints have integer coordinates is verv nearly the same as placing arcs
of length £ on a circle of unit circumference with their midpoints chosen according to a
uniform (0. 1] distribution. So in a sense, collision problems for random arcs on a circle

are just continuous versions of birthday problems, with one of the more basic problems

being to determine the probability that a set of k random arcs will be pairwise disjoint.

In terms of the notation of Section 1, the packing sequence for arcs of length a on a

circle corresponds to putting § = (0.1].
lr —y! ifjlr -yl <3
ulr.yr =
1-'7-yl otherwise.

and é = a. The packing sequence has equivalent points.
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N
:: The distribution of the time to the jnitial collision. r,. may be obtained from the
L - .
N work of Stevens [57]. It is found that for 0 < @ < 1 and k an integer.
!
= 1 ifk<1
o P{ra >k} ={ (1 -ka)*"! ifl<k<[a}]
:-: 0 ifk> [a“].
K The essential step in Stevens proof is the establishment of a one to one correspon-
: dence between configurations of k arcs having no overlaps with configurations of arcs for
| 4
O which none of the endpoints Cp.Cs.- - -, Cy lie in a specified region of length ka. Since the
-.': probability that & — I random points fall outside of a region of length ka is just
N
>, ( 1~ ka )k-l .
o,
'~
-l
N the above formula follows.
N
'..
» In contrast to the unwieldy product formula of the previous section. the expression
N (1 ~ kai*~! can be easily computed with a hand held calculator even if k is veryv large.
§ ': Nevertheless. for the purpose of establishing asymptotic results it is convenient to derive
‘;? upper and lower bounds for P{=, > k}.
., It should also be mentioned that the asymptotics of Stevens’ formula have been
NS
':.. thoroughly studied because of its connections with time series. Oune such interesting
- o .
- connection is due to the following fact:
. X, k-1
> - et :_ .
N P{r, > k} (P{Sk>a}>
s
:‘_: where X.- -, X are i.i.d. exponential random variables and S, = ):f:l X..
=
~ Proposition 1.11. For @ € {0.1) and k an integer satisfving 2 < k < a”?!,
P 2 g 4
5 (1.27) P{r, > k} < e-oklk=1),
| ':
‘-d, _akik-
(1.28) P{r, > k} > ¢ =%
.
>,
v,
.
A
.
N
-
f ‘-_,-.'\, Y \\}'\.\’\.\\*\ \},* - ‘,,s.\’-\."_ 'v\ *" 1"‘- O h w-*‘._v-.-._.'w.)'v.. ‘Jl"a"‘,»"‘.' .J',,«",{'f
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:- 32  Chapter 1 The Time to the Inual Collision of a Packing Sequence
;:, and. with the additional stipulation that a < }.
N e=akk=1)(1 — ¢?/3k) ifk < a™?/3
A ;: (1.29) P{rs >k} > { ( )
Nt 0 otherwise.
a7 Further, the lower bound (1.28) is greater than the lower bound (1.29).
S
»
:'j Proof. The double inequality
-::‘
¢ . ) (l=z
(l-z)jf<el<(1-2)F) (0<z<)
l' ) -
pw may be used to establish {1.27) and (1.28) as follows:
v
Y
v P{rs > k} = (1 = ka)*™!
v
&3
A =[(1- ka)gz]ka(k-n
‘ < e-aklk=1)
"‘ and
hi ka k=11
) —ka)] TToEG
o P{ra >k} = [(1 - ka) 5 >] = .
‘:‘ _ahk-l)
-... > € tl=kaj
“a
o To prove (1.29) it is enough to show that for all appropriate k and ea.
' f.: _nk k-1
o, 10g {6 T [e-ak(k—l)(l _ 02/3k\):-1} > 0.
f:: Using (1.3) it follows that the left side above exceeds
o (k = 1)(ka)? 1 1
N _ k= Dka)® 23, ‘/3k2 Q2k3 4+ L83
3 -k T4 °72 37 T3
Y k3a? o? 1
__ra /3 at/3k? 2.3 8/3).4
.;_ 1_01/3 k+2 k+3¢1k +4a
- 2/3 1 473,29 2,3, 1 8/3,4
- > a*"k 4+ =a*7k* - -a‘k -a 7kt
» + 2 3 + 4
',: It now suffices to have
" %a2/3k—-§-a‘/3k2+%a2k3> 1
n
‘.
'S for all k such that 2 < k < a~2/3, It is not hard to show that all points on the curve
LaS
o
N 5 1
" — g3 _ 2.
A v 4: 31: + 2:
< .
o
~
-
X
" »
L
AN
"
\
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Section 1 4. Random Arcs Gn a Circle 33

for which r € (0.1) lie above the line y = —1. which is sufficient to complete the procf of

{1.29). Note that the claim following(1.29) has been proven as well. ]

The proof of the following proposition is omitted since the results are easily estab-

lished using {1.27) and (1.29). Also (i) is just a special case of Proposition 1.3.

Proposition 1.12. (i) For any integer t > 0,
P{aira >t} ~e " as alo.

(ii) For anv a € 10.2/3).

-2

P{ra >[a~%]} ~ e as alo.

It is interesting to note that whether (1.29) or the more accurate lower bound (1.2%)

is used to prove (ii) above. the requirement that a be less than % is necessary. An
examination of the following expansion is helpful in understanding why this is so. For
k<al!
(1=ka)"' = exp{(k - 1)log/1 - ka)}
=exp{(k—1)[—ka—@)—2— M—}}

= ¢~k=Dkaoyp {—(k -1)

It then follows that

02—30

P{ry > [a"°]} ~ €™ 7 exp {— } as al0

for all a < %. From this last expression it can be seen that the statement in part (ii) of
Proposition 1.12 is true foranv 0 < a < % Furthermore. it is apparent from the expansion

above that the statement is not true for any a > 3.

With k,(a) defined to be the nearest integer to a=2, i.e. ko(a) = [a™* + %] Table
A compares P{r, > k,(a)} and exp(—ak?(a)) for various choices of a and a. The ratio

exp(—ak2(a))/P{rs > ko(a)} is denoted by r,(a).
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, 34  Chapter I The Time to the Ininal Collision of a Packing Sequence
. Table A
1 a  ko(a) (1-aka(a))e@-1  emakie)  p (q)
1072 10 0.387 0.368 0.950
10-3 32 0.365 0.359 0.984
1100t 100 0.370 0.368 0.995
108 316 0.369 0.368 0.99%
10-% 1000 0.368 0.368 0.999
10~ 16 7.31 x 1072 7.73 x 1072 1.06
103 63 1.77 x 1072 1.89 x 10°° 1.07
2 107 231 1.74 x 1073 1.84 x 1073 1.06
10~% 1000 4.36 x 1073 4.54 x 10~° 1.04
10~% 3981 1.27 x 10~ 1.31 x 10-7  1.03
10-2 18 3.43 x 1072 3.92 x 102 1.14
1073 75 3.12x 1073 3.61 x 1073 1.16
§ 107t 316 4.05 x 1073 4.61x107%  1.14
107% 1334 1.68 x 1078 1.87 x 10-8 1.11
107 23714 3.54 x 10°% 3.78 x 10-%5  1.07
10-2 22 5.42 x 1073 7.91 x 1073 1.46
2 107 100 2.95 x 1073 4.54x 107%  1.54
104 464 2.80 x 10~1° 4.46 x 10-1°  1.60
10~7 46416 1.65 x 10~% 271 x 107% 164
10-2 25 1.00 x 1073 1.93x 1073 1.92
% 1073 126 4.89 x 10”8 1.27x 1077 2.61
104 631 1.47 x 10-18 5.11 x 1038 348
10~2 32 6.42 x 10~ 3.57 x 107>  5.56
103 178 8.56 x 10~ 1.74 x 10°1% 203

oA

o - -
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The results shown in the table suggest that the approximation formula
k2
P{r,>k}=e ak

works rather well for & €< a=%%, and also performs reasonably for the case of a = 0.625.
The approximation seems somewhat disastrous for a > %; however, the case of a = % is
not nearly as severe as the cases for which a > % Similar results for cases with a =0

and a = 0.66 have the ratio r,(a) tending slowly to 1 as expected. Thus the requirement
that a be less than % in part (ii} of Proposition 1.12 doesn’t seem to be needed only
because a sufficiently tight lower bound is not known for P{r, > k}, rather its necessity
seems to reflect the apparent fact that the deviation from exponentiality in the tail of the

-2/3

distribution of 7, tends to become more pronounced for values around a or greater.

The following proposition follows immediately from (1.27) and Theorem 1.2 since for
random arcs of length a on a circle of circumference 1. p = 2a.

Proposition 1.13. E{r,} ~ },/T asa | 0.

The results of this section may also be applied to the problem of spacings on the unit
circle or, if end effects are ignored. on the unit interval. Suppose that Cy,C,.---.Cy are

selected at random from (0.1]. Form the order statistics
Cuy£C £ < Criy

and define the spacings §;.S52,--+. Sk by
C(l)—C(n)+l forj=1
S, =
’ C(J)—C(J_]) forj=2.-~-.k.

Let
Alk = min{Sl,Sz. .. -.Sk}.

Then
P{M; > a} = P{r, > k}.

As an example, it may be concluded from the results in Table A that the approximation

P{M, >a) = e ¥
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36  Chapter 1: The Time to the Iniual Collision of a Packing Sequence

should be fairly good whenever a is less than min{k~5/3,10-2}. {

Holst (22] obtains several nice results concerning the random variable A/,. He also }

examines the length of the jth smallest spacing. a quantity which is related to the prob-
ability of j collisions occurring. In [23], Holst studied the asymptotic behavior of tle
distribution of the largest spacing. which is directly related to the probability that a circle
is completelv covered by random arcs of equal length. A review of other results concerning
spacings is contained in [46].
1.5. Arcs of Unequal Length

This section deals with sequences of random arcs having fixed, but not necessarily
equal, lengths. The arcs have clockwise endpoints Cy,C,, -+ which are independently

selected from a circle of unit circumference according to a uniform distribution. The first

arc has fixed length a;. the second arc has length a2, and so on.

In this setting. two arcs will collide whenever any portion of them overlap. Note that
the dual interpretation of saying that a collision occurs whenever two selections from the

space are separated by a distance less than some fixed é > 0 is no longer applicable.
Letting r denote the time to the first overlap, it is easy to see that fora; + a3 <1
P{r>2}=1-a; - o,
A simple inclusion-exclusion argument yields that if a; + a; + a3 < 1 then

P{r>3}=(1-a; -a;-a)’.

Likewise, for a; +a; + a3+ a4 <1

P{r>4}=(1-a, -6 -a3—-ay)’ i

The calculation of this last 1esult, or any subsequent result, by brute force is extremely

tedious; however, a slight modification of a clever argument due to Stevens [57] establishes 7
that ]

L
(1.30) P{r >k} =[(1 - si)4 )" ;
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Section 1.5. Arcs of Unequal Length 37

for k > 2. where &4 = a; + -+ + a. (1.30) may also be obtained by appealing to a result
due to Marsaglia [39; and de Finetti [8). Their result states that if (X;.X5.---,X,)isa

random point on the simplex {x €IR" : 2, > 0.z, + - - -+ z, = 1}, then
P{X12a, " Xn2a,}=[(1-a; = --=an), """

(1.30) follows immediately since it can be shown that the joint distribution of the set of
spacings which occur between n points independently and uniformly selected from a circle

of unit circumference is uniform on the simplex given above (see p. 76 of Feller [15]).

An interesting consequence of (1.30) is that P{r = k} depends only on a; and si;

and not on the individual values of ay.---.ax—,. This may be seen through the equation
P{r=k}=P{r>k-1}-P{r >k}

ye-2 yE=1,

= (1 = sk = (1= k-1 —ai

T can be made to have numerous interesting distributions by choosing a;.az.---
in certain ways. In the examples given below, several cases are examined .n which the
sequence of arc lengths is either monotonically increasing or decreasing. In the first case
presented. the prescribed sequence of lengths has the time of the first collision being
equally likelv over a range of values.

Uniform Collision Time

If aj.a;.---,am are such that

a1+ ay=(m—-1)7",

(- G- b= G

> 1 m-—2)
a )
m= (m-l

Plr=2}=P{r=3}=---=P{r=m)= ——

ag

fork=3,4,---,m -1, and

then

and
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[

' Geometrically Decreasing Arcs
?

. Now consider the sequence of arc lengths given by

o+

’

ax = v* la
-\
? where‘)E(O.l)and0<a< . Fork2>2,
1‘5

l.:.
[
n
1]
N
oy i
1!
2
- -
~—
1~

o
N so that

o k=1 1
Ty 1 - 'Yk . |
: pes=fim(22)d 7 ke |
¥ Some asymptotic results for this setting are given in the following theorem.

’

‘: Theorem 1.3. If a; = 7¥~'a where v € (0. 1)and0<a< . then :
o* :
v M P{r<ki~(k-1)(5)a as alo ;
_ and

A \
(i) E[r]~ =2 as aloO.
.
’ Proof. The following two bounds can clearly establish (i).
k- 1 =~k k-1

2 <hy=1-fi- (22

2 P{r<k}=1 [1 (1_7 a

o, 1 - ..yk 4
' <(k—1)(1_7)a. ‘
i ! -1 X
N and for a < 4 [(k - 1) (3= !
~

~
p P{rgk}:l-exp{ -l)log[ ( )a]}

] >1—exp{(k—l( ) } )
N )
2

L. 1 ~ ” 1 .\k)] 2
> - - (k-1 :

: e (522 e (522

‘

-

o~
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Now (ii) will be established

and so

Eir]

(1.31) liminf > 1.

emor (531
Also. for anv m > 3 and a sufficient]y small.

m-1 1_7‘. k-1 oc l—“k k=1
Elri=2+ [1-(1_7)4 +Z[1-(1_7>a]

k=m

x 1=4am k-1
<2+(m—2)+z [I-—(1 'ﬂ )a}

k=m

=~

=2
=.

(1 - (52)am !

=m -+ T
(F==")a

(1-7)1
<m+ =
1-9m/ a

so that

Elr 1
1£,] < m’

a0t (5=) " 1-7

Since the above inequality holds for all m > 3, it must be true that

Er] o

(55~

lim sup
a0+

This result and (1.31) together imply that
1-9 +
E[T] ~ T as a— 0. [ ]

Displaved below are a few exact values of E{r] along with their corresponding asymp-

totic approximations for the case of 4 = % Note that the lower bound 1 + 3—;—" provides
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40  Chapter I The Tume to the Initial Collision of a Packing Sequence

an estimate of £~ which is even more precise than the asymptotic form 1= given by the

theorem above.

a E[7] 1=
0.1 6.1401 5
001 51.019 50

0.002 251.00 250

Uniformly Increasing Arcs
Now instead of a decreasing sequence of arc lengths. consider the case where the

lengths increase according to

ay = ka.
Then .
P{r >k} = [1’5‘%”“1 (2 <k < M(a))
0 (k> M(a))
wliere
1+8-1
M(a) = >

Asvmptotic results concerning r are provided by the following theorem.
Theorem 1.4. If a; = ka. then
(i) P{(%)”BT > t} ~e as al0
and
(i) E[r] ~ (1)"°T (4) as alo.

Proof. For k < M(a)

log P{r > k} = (k - 1)log [1 - _'ﬂzi—‘-)a]

(k= Dk(k+1)
L -
2
(k-1)

< =-—aq,.
2 a
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s@ that

- - -

tk~1)
2 ’a} (2 < k< My

r
P{r >k} < exp i.—

PIPIPII A

Q

Then for a sufficiently small

P{(;)]/jr >t}

oy

il

v
—N—

-

\"2
—
-

N
o
=
w
[
 —
e’

A& .,

e?a'e'a &8

&
A
®
¥4

o

&

L5854
A
]
Ko
P e et gt ar——
)
o
TN
7~ —
Rt
N——”’
=z
w
|
(&
~—
w
N, s’

o
e _ 3 a /3, a 273
= exp t+6(2) —12() t+ 4a

:' 50 that

) P{($)/3r >t

o limsup { )_IJ } <

o a—0* €

o Ifas mnl{wa:*h' \ k‘\k411$-\x-l)}'then

o

N

o kik +1)

N P{r >k} =exp(k-1)log|l - ——a

N -

2 S o1y | K (k(k+1) )’
v : - — - - a

v exp 7 3
,. 3 k k l 2
i > e [1-(1:-1)((—;—).1)

:: 3 kS

k

vy >e”7° [1 - —-—a2] .

- 2

. It follows that if a is sufficiently small then

A

.:\ ar1/3 9 1/3

5 P{(§> : >t}-P{r>[[(;) t

; > exp~t [1 - (4a)”3t5] .
s,

x Therefore
o P{($1 /3 > 1

-\"’ liminf—{—(—z—lg—} > 1.

-_': a—0+ e

) which when combined with a previous result establishes (i).
R
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42  Chapter 1 The Time to the Intual Collision of a Paching Sejuence

The bounds found above vield that

THT G WS

Miaj-1
Eirj=2+ Y P{r>k)
Mia)-])
_ayd
2+ € -

& %

A
] Al

=2
=2

x 3
2‘»/ e ¥4y
o

P ARAN
“(E) r(i) S

- .
o
1

] A
1 - f,""" -';

""l.

and

P A
L]
.«

Miai-1
E'- =2+ Z P{r >k}

k=2
Ma) 3 )
. >/ e (1 . ’-az) dz.
o 2

Now for a sufficiently small. %az > 1forallz > Ma). Therefore. when a i1s small enoug’..

R

]

W, s 4
%

o f"l"{.:"‘.f' - .

These upper and lower bounds for E'r] can be used to easily establish (ii). [ ]

The accuracy of the approximation

is demonstrated below for various values of a.
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1/3

a E's (%l

'}
b}
L/

3.197 2775 -

4.672 4.279

ey

R
s S‘,‘x’

8.102 7.736

(2
o

2
1.9% x 10-* 19.65 19.30

495 x 1077 30.93 30.59
T.98 x 1076 56.63 56.29
2.00 x 107° £9.66 89.33
500 x 10~° 142.1 1418
2.22 x 107" 186.1 185.6

{ r’- ) :&2"}"’. !\}7(’ {‘l' r\r\"l' "- .

& “x

Quadratic Growth

. »
(XA

If the arc lengths are given b

X0

0, = k‘a

then
k(k + 1)(2k k-1
p{r>k}=([1__5*_”i_:‘_1)a] )
6 -+

for 2 < k. For a not too large. the following bounds are true:

a I3

CARERR

%

P{r >k} <exp (—%k‘)

';"f‘

.f.

ra sy

and
2
r sk Ty R AT PR T
P{1>k}>exp( 3(k+1)>[1 9(k+l)].

These bounds can be used to prove the following theorem (whose proof is omitted) by a

NN
DA

method which is entirely similar to that which is used in the proof of Theorem 1.4.

» e
]

»
[

Theorem 1.5. If ax = kZ%a, then

'

(i)P{(%)”‘r)t}—ve"‘ as alo0

", 14'

and

’.

~

GV Efrj~ ()Y* T (3) as a}o0

F9
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19
(™

. Displayed below are a few exact values of £+ along with their corresponding ap-
j\ proximatiouns.

&

7,

. . _1

a Elr]  (5)7°T(})

o 348 x 1074 9.003 £.731

o

- 2.96 x 107° 29.03 28.77

- 3.00 x 10-° 161.5 161.2
"': Exponentially Growing Arcs i
M
1
a As a final example. consider the sequence of arc lengths given by

-, — k-1 1

\; ay = ¥ a (v > 1),

\.‘f
:': so that s increases geometrically. Then. for k > 2
‘ ok _ 1 k-1

e (- (52)4)

. T-1 -

"\

..
'::- Neither a tight upper bound nor a tight lower bound is readily established for E '

however, it is found that E[r] can be closely approximated by a quadratic polyvnomial in

iy loga whose coefficients depend on ~. For instance, if 5 = 2 then

- E[7] = fa(a) = (8.811 x 10™*)(loga)? - 1.335loga ~ 3.10.

‘; and if v = 3/2. then

"y,

A
3 E[7] & fyz(a) = (5.065 x 10-%)(loga)? - 2.107 loga — 6.36.

: The closeness of these approximations can be seen in the results given below. In each case
A v
Y the fit was done using more than twenty points. and the comparisons presented below are
By
just representative samples given to show the accuracy of the approximation '

N 4
Y

~

w.
4
4
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-
)
a E'- Slai 4

9.78 x 10~ 714 6.20 ™

9.54 x 10~ 15.79 15.58

9.31x 1071 2508  25.05 o
\h
909 x 10713 34.60 34.60 )
\'

EASx 10710 4423 4423 A
r

A

A

a E'r S3pz2la) ",\_

261 x 1078 21.64 21.57 :

343 x 1077 26.15 26.13 ’
452 x 107" 30.73 30.73 “:-
N,
5.95 x 10~° 35.37 35.37 :'
TR4x1071°  40.05 40.05 RY
&

1.6. Arcs of Variable Length "
-

o
s

This section considers another generalization of the packing sequence described in

Section 4. Here each selection from the space § = (0,1] will be taken to be the clockwi-»

endpoint of an arc having variable length on a circle of unit circumference. The length of

each arc placed will be an independent observation from a distribution F. and a collision

will occur whenever any pair of arcs are not disjoint. The related covering problem. wlere

random arcs of variable length are placed on a circle until its circumference is completelv

covered has been studied by several investigators (see 24] and [51] for example); however.

the collision problem discussed here does not seem to have received much attention.

Let the sequence of arcs be labeled A;, A;.---, and let arc A, have clockwise end-

point C, and length L,. Thus C,,C;.--- are i.i.d. random variables with a uniform (0.1

distribution and Ly.L,.--- are i.i.d. random variables having c.d.f. F. Furthermore. tle

L,’s are independent of the C,’s.
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48  Chapter I The Time to the Imual Collision of a Packing Sequence

Now let
Se=Li+- -+ L

and let F; denote the distribution of S;. Let mpr denole the mean of a random variable
having distribution F, and as was the case in the previous sectiot let r give the time of

the first overlapping of arcs.

The following theorem provides a lower bound for P{r > k} in the setting described

above.

Theorem 1.8. For a sequence of random arcs having lengths Ly. L;.--- ‘4 F
P{r >k} > [(1~kmp) %!

for anv choice of F.

Proof. It follows from (1.30} that for k > 2
P{r >k} = /P(T >k Sy =s}dFz)

= /[(1 - 815 F ).

Thern using Jensen's inequality, it follows from {1.32) that

P{z >k} 2 [(1 - E[Si))s]*"".
(1.33)
=[(1 - kmgj )N ]

Note that a consequence of (1.33) is that E[r] for a packing sequence of arcs having
variable length prescribed by F is greater than or equal to E|r] for a packing sequence of

arcs all having length mpg.

Unfortunately, (1.32) is not necessarily easy to evaluate exactly, since for many
choices of F the distribution F is troublesome to obtain. However. notice thatif F (1) = 1

then
P{r > 2}

]

El1-58;

1-2E[L,).
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Section 1 6 Arcs of Variable Length 47

and if F (§) =1 then
P{r >3} = E[(1 -~ 53)*]
=[1- 3E(L1)]2 + 3 Var(L,).

Similarly, if L, is less than ! with probability 1, then

P{r >4} = (1 -4E(Ly)>+ 12 Var(Ly){1 = 4E(Ly)] ~ 4E[Ly -~ E(L;)".

Note that if the distribution F is symmetric about its mean, then the last expression
simplifies to

P{r >4} =[1-4E(L)P + 12 Var(L))1 - 4E(L,)].

For larger values of k. P{r > k} can also be expressed in terms of moments of L,: however.

the difficulty of doing so increases with k.
Some Examples

If F is the uniform distribution over (a.b. the expressions above vield that

P{r>2}=1-(b+a).

2+ (b—a)2.

3
P{; >3}=[1—§(b+a)] y

and
P{r>4}=[1-2b+a)P+(b- a)*[1 - 2(b+ a)}.

provided that b < %. For the class of uniform distributions having mean m < % the above

probabilities are maximized by choosing (a,b] = (0, 2m].

If F is the uniform distribution over (0,b}, then P{r > k} may be obtained directly
from (1.32) for any values of k and b. Feller {15] has shown in this case that for all s.

k

Fi(s) = # S~y (j)[(s - b))

1=0

and
k

1 k by k=1
Jels) = m;(—l)]<-\[(s—1b)+} |

’

{cf(fn'(.' N

»

”.f“\', ) > r
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. where fi is the density for the distribution Fi. The above formula for Fi(s) ws originally

Ay .
AN obtained by Laplace {33.

LY
o

™ It should be noted however, that the evaluation of

- /[(1 ~ $)¢ )57 fil(s)ds

_,_‘ becomes quite tedious for larger values of k. Alternatively. for k < 1’; one may use

bopb b

e P{r > k) :b""/ / / (1 =2y = 23— —2;) Vdridry - - drs

o ¢ Jo Jo

o

N

" As another example. suppose the arc lengths are distributed sucl that

N a w.p. q

3 L= {

b wp l-g

N
:~ where a < b. Then for & > 2, '
~ ,
\. ‘
4 (1.34 P{- >k}—Z(1—Ja- k — j)b], )" ’( )qm_q\*-f

L =0

N
43

~, Now some comparisons wiil be made between various values of P{r > k} and E'r’

k arising from different distributions all having the same mean. Consider eleven distribu-

- tions. Gy.---.Gyy. each having mean ;‘3-0 Let G, be the trivial distribution which assigns
_:', probability 1 to the outcome 5. Let G, be the uniform distribution on (z%5. 355, - and

... 0
N let G; be the uniform distribution over (0, 50] Let G4 assign equal probability to each of ’
2 the values 5-07) and 5= 200. and let G give equal probability to the outcomes ]01—00 and == 1000
- Let Ge be such that if L ~ Gg then P{L = ;}5} =2/3 and P{L = %} = 1/3. and let

s

N G: be such that if L ~ Gr then P{L = 555} = } and P{L = &} = %. Each of these

- first seven distributions has a variance that is no greater than 8.1 x 10-3.

~

£ The variances of the next four distributions increase from a value of 4.725 x 10~* for

< Gs to a value of 2.34 x 1073 for G11. Gg is such that if L ~ Gg then P {L = 1} = 12
po- and P{L =%} = {&. and Gy is such that if L ~ Gy then P{L = 5=} = 232 and .
- .
~ P{l = %} = 21799-. Let Gy be such that if L ~ G,p then P{L= ‘—JO—O} = :—g—(} and
N : ]
N

Ty -
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s Section 1.6: Arcs of Variable Length 49
~

:: P {L = %} = 4—39%‘. Finally. let Gy be such that if L ~ Gy then P {L = 4—(}@} = g%? and
L _ 1) _ 13
o P{L=3}=35

A
Y Let 7, denote the time of the first collision for the packing sequence of random arcs
", having lengths distributed according to G,. Then for j = 1,---,11, P{r, > 2} = 0.98.

)

:.: The following table gives the exact values of P{r, > 3} and P{r, > 4} for j = 1.---,11.
]

:: as well as estimates of the E[r,] based on 100,000 computer simulation trials for each

distribution. ( E{ry] is exact.)

.

»

w‘: i P{r,>3} P{r;>4} Elrj]

’-

V. 1 0.940900 0.88474 9.622

?

’ 2 0.940925 0.88483 9.636
N
L~ 3 0.941000 0.88512  9.687

- 4 0.940975  0.88502  9.694

- 5 0941143  0.88567  9.823
. 6 0.940967 0.88499 9.685

- 7 0.940967  0.88499  9.680

- & 0942318 0.89010  11.05

9 0.944178 0.89686 13.82

: 10 0.944264 0.89718 14.23
"¢
s 11 0.947920 0.90954 21.60
oy
It may be seen that the values of E[r,] for the six nonconstant distributions having
N small variances are not too much greater than E[r;]. For the four distributions with large
-
o variances, the values of E{r,] increase as the variances increase, and they are considerably
:-:: larger than E[r;). Also. it is apparent that E[r] is not asymptotically proportional to
- (P{A; A A2})~/2, as was the case when all of the arcs had the same length.
o,
~y - . . . . 3 . . . .
*e When comparing arc length distributions having the same expectation. it is conjec-
:}: tured that E[r] increases as the variance does. So with a large variance the arcs tend to
- N .
avoid each other and thus cover the circle at a faster rate than arcs of smaller variance
..
..v.
‘e
Cel
2,
e
. 'J
M
"o
>,
S
"y « e = . e B ey el Al . - - - - e = - . ~ - B . - . . N
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50  Chapter 1: The Time to the Initial Collision of a Packing Sequence

do. This.is consonant with the conjecture examined by Siegel [49' and Hufler {24} dealing
with the coverage of the circle by random arcs. They conjecture that when comparing
arc length distributions having the same expectation, that if one concentrates more mass
near the expectation, then the corresponding coverage probability will be smaller. In
other words, they claim that a smaller variance gives a slower rate of coverage. But this
suggests that the arcs may tend to overlap each other more frequently, which would mean
that their conjecture is somewhat consistent with the observation that E{r] decreases as

the variance does.
An Unusual Case

An interesting case of a two outcome distribution is where one of the outcomes equals
zero, and the other outcome is such that E{L,] = m. That is, suppose

0 w.p. ¢
(1.35) L= {

T WP l-g

where 0 < m £ 1-g. A collision occurs whenever any two arcs of positive length overlap.
or whenever a point arc of zero length is covered by an arc of positive length. An easyv
argument establishes that (1.34) remains true even for this degenerate case. The following

theorem is a statement of this fact.

Theorem 1.7. Suppose arc lengths Ly, L;,-- - are distributed according to {1.35).
Then

PR =Y ([i-« -1)1—’f—q]+)H ()ea -

=0

Proof. Let Hy ; be the event that exactly j of the first k arcs have length zero. Then

k k )
(1.36) P{r>k} = ZP{T > k| Hk,,-}(j)q’(l - q)*.

J=0

(1.37) P{r>k|Hio} = ([1-k(1—'f-a>]+)k_l.
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and
(1.38) P{r>k|Hcs} =1

For 0 < j < k, P{r > k| Hi,} is just the probability that (k — j) random arcs of length
T?? are disjoint and that j random points avoid the portion of the circle covered by the

positive length arcs. Upon conditioning, it may be seen that

Pr>kl gk = ([l "““”%L)J ([‘ -(k—j)g“q])kﬂ_l

m k=1
“(p-e-aig] )
+

Noticing that this formula also holds for the cases given by (1.37) and (1.38). it follows

from (1.36) that

k m k-1 k
P{r>k}=z([1-(k-j)——] ) (.)un-q)“‘J
1=0 1-qi, J
(which is the same as (1.34) for this case]. (]

Now suppose that ¢ = (1 — m). so that
0 wp.1-m
(1.39) L=
1 wp m

Clearly, for k > 2
P{r >k} =P{His}

={1 —m)“.

Hence

E[r]=2+ i(l -m)*

k=2
1
=m+ —.
m
Putting m = 0.01 yields
E{r] = 100.01,

which is larger than the value of E|r] for each of the previously considered distributions

having E[L,] = 0.01.

'-P_'.J":J_:f.;.'\'.',;d'.;f,;-"_;f\’-ﬂ '.‘_;-r "o 'J‘_;I’ '.f,;'.r_:.r,'.r PN %
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Another Interpretation e
A
Now suppose that a collision is considered to have occurred only if there exists an ;\
Y

overlap of positive length. Then, unlike the previous interpretation, the arcs of length

zero cannot participate in a collision.

The distribution of 7 is easy to determine in this case. If the arc lengths are dis-

'\:"{-.{\( ‘:. .

tributed according to (1.35). then for k > 2 N
a.
=2 k . N
Pr> k=3 Pir> k1 H(S )P0 -t v
k-2 k=j=1
om k -
=Z([1-(k—1)1—-_—] ) (.)q’(l—q)"’- v’
=0 q + J "M
If the lengths are given by (1.39). then for k > 2
v
P{r >k} = P{Hix U Hcix-1} N
)
=(1-m*+k(1-m)f1m. .
It follows that in this case '!‘
oc v ]
E[r]:2+Z[(1—m)k+k(l—m)k‘lm] ‘_;
k=2 i )
2 )
= ; :.P
-
|7
Some Bounds oy
As mentioned previously. the evaluation of the formulas for P{r > k} becomes .ﬁ
difficult unless k is rather small. It is therefore convenient to establish upper and lower e
ey
bounds for these probabilities. »
r'_'
For any choice of F, (1.33) provides a lower bound for P{r > k}. It then follows .
from the proof of Proposition 1.11 that for k < m;_z/a f.::
v’
2/3 £
P{r >k} > e~mr klk-1)(q _ m,-/ k), L}
Ry
‘-
provided that mp < 1. :.:
iy
An upper bound for P{r > k} is given by the following theorem. ;\
»
W
~.
X
N
3
.
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Theorem 1.8. For a sequence of random arcs having lengths Ly. L,. - 1A F.

k
(1.40) P{r >k} < (/ e"“"”‘dF(:))

for any choice of F.

Proof. If 0 < Sk < 1 then

(1= Sc)e = (1~ S)

(1.41)
< e Sh.
This inequality is also true for S > 1 since e~5* is alwayvs positive. It then follows from
{1.41) and the independence of the L, that
P{r >k} = E{{(1-S),)"}
S E{€—<k~1)5u}

= E{e-(k~l)(L1+ “‘Lh)}

%
= (/ f'“"”‘d}'{r)) . []

More Examples

The upper bound (1.40)is generally much easier to evaluate than (1.32). Forinsrtance,

P{L,=a} = P{L,=b} =

.

0| —

then the upper bound (1.40) becomes

k
—(k=1)a ~(k-1)b - a
(1.42) (e -;e ) - [cosh" ((k“l)(bza))] e-kk=1)88e)

If F is the uniform distribution on (a,b], then

1t .
e~ (k-1 g4,
b-a/,
e—(k=1)a _ o=(k=1)b k
(k=1)b-a) '

It may be shown that this upper bound is bounded from above by (1.42).

IN

P{r >k}
(1.43)
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54  Chapter 1. The Time to the Imual Collision of a Packing Sequence

To consider a specific example. suppose that

1 3 1
P{L‘ 200} {L = 200} =2

Then the lower bound given by (1.33) is
k k-1
2 - — .
P{r >k} > [(1 100)*]

E[r]=2+iP{r>k}

k=2

k-1
>2+ 1- —
> (1- 1)

= 9.622.
Recalling for this distribution (G4 from before), that the estimate of E'r) obtained from

so that

100.000 simulation trials was 9.694, it is observed that the lower bound is reasonably close.

For this case. the upper bound given by (1.42) becomes

k
exp - 453] + exp {——1—3"'”}

200

P{r >k} <

Since P{r > k} = 0 for k > 199,

This upper bound for E{r] is not as close as the corresponding lower bound; however, it
only overestimates by about 2.6%.
An examination of the case where F is the uniform distribution over [5=, 33| again

finds that the bounds produce good estimates. The upper bound (1.43) yields

: 199 (exp [-53] —exp [_:_5_(_2'%01)]
Ehs“; (k- 1)/100

= 9.904,

a value that overestimates the observed value. 9.636, by about 2.8%
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"7 . A .

:: The lower bound in this case has the same value as did the lower bound in the
‘\E previous case. 9.622. This occurs because the lower bound provided by (1.33) depends
‘J. only on the distribution through its mean, which is the same for both cases. It will be
. seen in the next case considered that the lower bound sometimes performs veryv poorly.
’

If the arc lengths are distributed according to (1.39) then

. P{r >k} <[(1-m)+ me -1k

a7 so that

\‘ o
» E[r]<2+ Y [(1-m)+ me -1k

v, k=2

o Putting m = 0.01 yields
E'r] < 100.025
';:j which is not too much greater than the exact result.
"

) E[r] = 100.01.
)

3
.

Notice however that the corresponding lower bound. which is again equal to 9.622. is

5

53

extremely poor for this choice of F.

o,
A Another Approach
:-. An alternative upper bound for P{r > k} may be produced by the method used in
S
.
o', Section 2. For instance, suppose F is the uniform distribution on [a.}], and let p derote
e
e P{A. A A,} (r # s5). Then
. p=1-P{r>2}=b+a.
‘::',' P{A,AA, A(AA,}isequal to p?if r, s, t and u are all different. If s = u, this probability
-:::' is given by
::‘ b—a)3///P{A’AA' ANA | Ly=z,Li=y.L, = z}dzdyd:
3
‘s b / / / (z + 2)(y+ z)dzdyd:
P 13
v
- » = — b .
2( + 3
f
-
e
N
oy
' »
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56  Chapter 1 The Time to the Initia! Coliision of a Packing Sequence

which is less than {%pz

Now for k > 3.

P{r>k}=P m { A, does not collide with 4,}
1<1<y<k

k 2 (;) 1 (k
<1-(g)orr [(2)*123(3)
k(k-1)  k(k=1)(k-2)
T PtP 24

The last expression above is less than or equal to the right side of (1.7) whenever

=1

(3k + 4).

(1.44)

(Tk? =17k + 3) (k-1)8
P+ p?

<1
12 24 -
Noting that the left side of (1.44) is less than

Tk-12 (k-1 ,
2 7t P

1/5
it is clear that (1 44)istrueforall k <1 4+ min{ %. (;7}) }

The key steps in the proof of part (i) of the following proposition have now been
established. The remaining details of the proof are omitted. Parts (ii) and (iii) are proved

in the same way as the analogous propositions in Section 2.

Proposition 1.14. Suppose F is the uniform distribution on [a.b] where 0 < a < b < %

1/5
(i) Let M = min {,/ﬁ. (ﬁﬁ’) } Then

-2
e UTE e frock< M

2
e~ M (a+t) otherwise.

APy X

P(r>k}<{

{i1) For fixed t > 0.

(ffff‘f'i

(iii) For 0 < a < %

Y Y VYA C

P{r > [(e+b)°]} ~exp [-%(a+ b)"z"] as (a+b)|0

% 5

RS S5

f.'
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Results similar to these mav be obtained for the discrete circle of leng'!. . disciiene
in Secuon 3, as well. For example. suppose F is the distnibution that assigns equa!

probability to the first m positive integers, where m < 3. Then

P{L,=;}= (1=12,---.0=1.---,m),

1
m
where L, is the length of arc A, as before. The clockwise endpoints C,.C;, - are selected

independently and uniformly from S = {1,2,.-.,n}.

Now

m
p=P{A,AA,}:;,

P{A. A A, A, AA) =P

if r. s, t and u are all different. and for r. s. and t all different

13 ., 1 13
P{A. A A, . 4, A A :—‘--——(._2_
{ s AN A = TP - g <P

Noting the similarities between these probabilities and the analogous ones for the contin-
uous case. it follows that if (a + b is replaced by p = T, then the results stated in the last
proposition hold for the discrete case also. Similar results are attainable for choices of F

other than the uniform distribution. in both the discrete and continuous cases. However,

not everv ciioice of F can be successfullv handled in this manner.
1.7. Packing Sequences in Two-Dimensional Spaces

In Section 4 the distribution of 7 was investigated for the packing sequence of placing
random arcs of length a on a circle of unit circumference. In this section. several two-

dimensional analogs of that packing sequence will be examined.

The first case to be considered will be that of placing random circular disks of area «
on a two-dimensional unit torus (see Miles {40] for a description of the k-dimensional unit
torus). Each disk has radius \/g so that two disks collide if and only if the euclidean

distance between their centers is less than 2,/T. Formally

$=1(0,1] x (0,1]
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58 Chapter 1 The Time to the Initial Collision of a Packing Sequence

6:2‘/_1:.
1.4

C|=(C|I’Cl2) ('=1v2s)

and
The points

are the centers of the disks. and they are selected randomly from S by letting th- C,; be
independent, uniform (0, 1] random variables. The distance between two points is given

by

V(CI-C]) = ([u'(Cu.Cﬂ)]z + [/-‘.(Cl2-cj2)]2)”2

. lz -yl ifjz-yl <}
uiry) =
1 -|z -yl otherwise.

This packing sequence has equivalent points, and

p = 4v.

Unlike the case for arcs on a circle. the distribution of 7 is not known precisely in
this two-dimensional extension. Propositions 1.1 and 1.2 provide lower and upper bounds
for P{r > k}: however. the upper bound is not sufficiently tight over a large enough range
to yield an asymptotic expression for E{r] as p tends to zero. A plausible, but not exact.

argument will be used below to derive an approximation for E[r].

For each disk center C,, let the associated “target area” be given by
EI = {(1‘, y) € §: “'((zvy)vci) < 6}

Thus a disk with center C, will collide with the disk having center C; if and only if C, € E,.
or equivalently if and only if C, € E,. Also let

S

A ={(z.y)€ S:ul(z,y).C)) < §/2}.

2P

Then A, represents the actual disk of area v surrounding the point C.
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Now {r > & — 1} implies that

ANA, =0 V1<i1<j<k;

k-1

=1

however, note that the collection of sets { E,} need not be mutually disjoint. The event

{r <k -1} implies that A,N 4, # ¢ for some 1 < i < j < k. This means that for at least
one pair (i,7). the area of E,N E, is greater than the maximum allowable overlap of target
areas when all of the A, are disjoint. Now it is heuristically assumed that conditioned on
{r < k -1} having occurred. the area of U¥Z! E, is not on the average larger than it is for

when {r > k - 1}. That is. it does not seem unreasonable to assume that
(1.43) P{CiACk=1) 7 <k=1}< P{CL AC(k=1)| 7>k =1},
which would imply that

P{C AClk -1} S P{Ci AC(k=1)[T>k—-1}.

or equivalently

P{CiVC(k—-1)|7>k—=1} £ P{Ck VCia}.

If the above is true. it then follows that
P{r >k} =P{Ce VC(k-1).7> k~1}
=P{CeVC(k=1)|7>k-1}P{r>k-1}

< P{Ci VC(k - 1)}P{r > k - 1},

and induction vields
P{r >k} < P{C: VC(k = 1)}P{Ci-1 VCi2}-- - P{C2VC1}P{r > 1}.
Since P{r > 1} =1 and

P{Cm VCma}=(1-p)™? (m=2.3.--),
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60  Chapter 1. The Time to the Imual Collision of a Packing Sequence

1t follows that a1

P{r >k} <1 -p)Zm:lm
- (1 _p)!‘-”k

(k=112
< [(1 - p)MP)=7r

_@=1)?
<e P,

If this upper bound is indeed true, then the result below easily follows from Theorem 1.2.

Theorem 1.8. Assume (1.45). Then for the packing sequence of circular disks on

the torus

(1.46) Elr]~ 2 as p|l o,

E[r]~1/§% as tv}0.

For another analog. consider the random placement of spherical caps having surface

or equivalently

area v on a sphere of unit surface area. Each cap has angular radius a = 2sin~!(/7).
and two caps collide whenever the great circle distance between their centers is less than
¢ = 2a. This packing sequence has equivalent points with p = 4v(1 — v). Similar to the
previous analog. it follows that for small p an approximation of E[r] is given by

s

2p

’ x
E[r]z m

It is interesting to compare the above result with the analogous one for random disks

Thus for v not too large.

on the unit torus. For disks and spherical caps having the same area, the results imply
that the expected proportion of the total surface area covered immediately prior to the
initial collision is greater for the caps on the sphere than it is for the disks on the torus.
Since P{r > 2} = 1 - p for packing sequences having equivalent points, it also follows
that P{r > 2} is greater for spherical caps than for disks of the same area. Because it

is difficult to obtain closed form expressions for P{r > k} for caps on the sphere when

------
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Section 1.7: Packing Sequences in Two-Dunensional Spaces 61

k > 3.1t will not be proven that P{r > k} is alwavs greater for spherical caps than
for corresponding disks: however. simulation results (not reported here) indicate that this

may be the case.

A third two-dimensional analog to arcs on a circle is the placement of squares of area
v on a two-dimensional torus such that the two sides of each square are aligned to be

paralle] to a pair of perpendicular axes on the torus.

For this extension. the space S and the centers C;,Cy,- .- are exactly the same as

they were for the case of disks on the torus. However, now
[l(C..C)) = ma-x{/-‘-(ClI~CJl ). u°(Cia, CJZ)}

where u* is the same as before. and

6=

This packing sequence has equivalent points, and it seems reasonable to suppose that.

for small p.

as it was for the case of disks on the torus. For squares of area v.

p = 4v,

Elr]~ \/g

Thus the expected time to the first collision for random squares of area v on a unit torus

so that

appears to be approximately equal to the expected time to the first collision for random

disks of area v on a unit torus.

The following table displays, for both settings, some estimates of E[r] obtained by
computer simulation, as well as the corresponding values of the approximation formula

for E{]. E[’r:,v] denotes the observed average value of 7 for disks of area v. and E{7,,]

denotes the corresponding value for squares of area v.
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82  Chaprer I The Time to the Initial Collision of a Packing Sequence

B L

A Monte Carlo study of expected time to first collision on the torus
T4 15 the collision time for random disks of area v

T4 is the collision time for random squares of area v

#trials  Elre,) E[rn. JZ
60000 3.3255 3.3282 2.5066

50000 3.9517 3.9570 3.1333

50000 4.5833 4.5862 3.7599

50000 5.8134 5.8334 5.0133

50000 6.4412 6.4551 5.6399

110000 7.0696 7.0753 6.2666
6.4x 107 50000 8.6662 8.6608 7.8832
2.5 x 1073 50000  13.345 13.335 12.533
1.6 x 1073 50000 16.525 16.515 15.666
9.0 x 104 50000 21.697 21.713 20.889
6.25x 1074 50000 25.947 25.822 25.066
4.0 x 10~¢ 10000  32.193 32.110 31.333
1.0 x 1074 10000  63.440 62.725 62.666
2.5 x 1075 10000 126.90 125.66 125.33
1.6 x 1073 10000  158.63 T. 156.66
9.0 x 1076 10000  209.35 208.89
6.25x 10 10000 251.95 250.96
4.0 x 10-6 10000  313.93 313.33
1.0 x 1078 5000 631.50 626.66

It may be seen above that for the larger values of v, E[r,,] is greater than E{ry,].

For the smaller values of v considered, the reverse is true except in two cases. For these
two cases, the apparent discrepancy may possibly be due to the smallness of the samples

and the variability of .

'+,
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o
It is interesting to note that for all v < Z the distribution of 7 is different for disks
L]
. and squares of the same area v. This may be established from the fact that
N
o 12V3
) P{r>3}=1-12v+ (32 + v?
- it
> for disks of area v < 7, and
> P{r>3}=1~-12v+ 39¢2
’-
for squares of area v < -11—6-. These probabilities were calculated explicitly.
&
5 . . . . .
':.\ Packing sequences may also be defined in spaces having dimension greater than two.
Y
N For example, consider the three-dimensional extension of the last packing sequerre de-
R scribed. Sucli a packing sequence corresponds to placing at random cubes of volume v in
:: a three-dimensional unit torus. A collision occurs whenever two cubes overlap.
. o<l
: >, For 1 < g
l

P{r>2}=1~p=1-8r.

&

,.
et ts

A direct calculation yields that if v < 6—‘4 then

P{r >3} =1- 24v + 16502,

'

[
"- The computation of P{r > k} for k greater than 3 is not easily accomplished: however, it
e
.._: is not unreasonable to expect that if v is sufficiently small then P{r > k} is a polynomial
A

. in v of degree k — 1 having
- k

N7 1—k(k-1)4v=1- 5P
o~ as its first terms.

-t
L, An argument similar to the one given for the two-dimensional cases suggests that
::;: E|[7] should be closely approximated by
2, LA

” 2p ~ V16e

-.5: To be more precise. if (1.45) is true then it easily follows that E{r] ~ /15
o4
b

o,
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X T W 8 2
R 2

The table below contains estimates of E{r] obtained by computer simulation. along

with corresponding values obtained from the approximation formula above.

# trials  E[r) =

104 4.372 3.545
104 10.891 10.027
104 14.829 14.012
104 40.004 39.633
103 311.652  317.066
103 452472  443.113
CERT] 200 1229.625 1253.314

1.8. Random g¢-ary Codewords

Consider the metric space consisting of all g-ary n-tuples with Hamming distance as

the metric. That is, let
S= {(31’329"'9'571):8!' € {Oa,q— 1} (1= 1,"',71)},
and for z = (z;.---,z,) € Sand y = (y1,**,¥n) € S let

n
“(Iv y) =n- Zégj—ylv

=1

1 fw=0
by =
0 ifw#0.
Thus the Hamming distance between two points is just the number of coordinates in which

they differ.

WSS

Note that there are g™ points in the space. If two points collide whenever the Ham-

ming distance between them is less than d € {1,2,---}, then the probability that two

arbitrary points collide is just

ISR

pamdr= =3 ()17

7 =

WLl
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Note that for d equal to 1. the setting is the same as that of the basic birthday problem

when there are ¢" days in a year.

For the case of g equal to 2 and d > 1 fixed, a result of Kozlov [32] yields that as n

and k tend to infinity, if

(g)p(l n,d)— A

then

P{r >k} —e .

This suggests that the approximation
k
P{r > k} = e~(a)p(2n0)

should not be too bad if n and k are not too small.

The results of Section 2 may also be applied in this setting, since the packing sequence

has equivalent points. Proposition 1.3 vields that

1/2
P{(ﬂ_‘l%ﬂ) 1'>t}~e'22 as n — oc,

for fixed ¢ and d. Furthermore, an argument similar to the one preceding (1.43). combined

with the result of Theorem 1.1, suggests that the approximation

T

should do reasonably well provided that n is not too small.

-

E As an example, consider the case where ¢ = 2 and d = 3. Letting E’[-r\]m denote the
:: average value of 7 obtained from m random packing sequences performed by a computer
.:' using a pseudo random number generator, the table below displays values of Eﬁm and

the approximation given bv (1.47) for various values of n.
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66  Chapter 1: The Tiume to the Initial Collision of a Packing Sequence

n m ETT\],,l . /;_;-m
9 1000 4.96 4.18
11 1000 7.73 6.93
13 1000 12.52 11.83
15 500 21.70 20.62
17 500  36.92 36.56
19 500 66.51 65.66
21 250 119.92 119.16
23 250 217.41 218.10

LI ARSI e

O JE gty =

The following table shows some corresponding results for the case of ¢ = 2 and d = 5.

.
: n m Emm b(—{ms—,
. 15 500 6.08 5.15
: 16 300 7.0  6.40
17 500 845 8.00
18 500 108  10.09
19 500 14.08 12.79

E 20 250 17.16 16.30
21 250 21.68 20.89
- 22 250 27.06  26.89
. 23 250 34.56 34.76
- 24 250 47.86 45.11

Now consider an alternative packing sequence on the space of ternary n-tuples having
- a metric u given by
; pz,y) = hyied lzi — il
2 Two random points collide whenever the distance between them is less than 2. Thus two

points C; and C, do not collide if and only if for some m, C;m = 0 and C,,, = 2, or

-
-
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Section 1.8 Random g-ary Codewords 67

Cim =2and C,n, = 0.

This packing sequence may also be described as follows. Imagine a cube in n di-
mensions of sidelength 4, having a cubic lattice of unit sidelength superimposed within
it so that each vertex of the cube coincides with a lattice point. Smaller cubes, having
sidelength 2, are then sequentially placed at random within the larger cube so that each
vertex coincides with one of the lattice points. This may be accomplished by letting the
C,(1=1,2,---,7=1,---,n) be i.i.d. random variables having a uniform distribution on
the set {0,1,2}. Equivalently, each of the small cubes is put uniformly at random at one

of 3" possible locations within the big cube.

The centermost location within the large cube is labeled (1,1,---,1). The sides of a
small cube placed at this location do not touch any of the sides of the large cube. This is

not true if a small cube is placed at any other location.

A collision occurs whenever anv two small cubes are not disjoint. Notice that a small

cube placed at (1.---.1) will collide with any other cube.
The probability that any two arbitrary points collide is
-(3)
P=\3)
This follows from the fact that
P“Cim - ij! < 2}
1 2
= P{|Cim = Cjm| < 2| Cjm = 1} (5) + P{|Cim = Cjm| < 2| C;m € {0.2}} (5)

0(3)+ () ()

The packing sequence does not have equivalent points since

©i -1

P{C,‘/\CJ"Cj:(l,"',l)}:l#p.

Thus Theorem 1.1, which provides a lower bound for E[r] which is asymptotically equiv-

alent to , /4. is not applicable. The argument in Section 7 which suggests that E[r]is
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\ 68  Chapter 1 The Tume to the Initial Collision of a Packing Sequence

bounded from above by | /{—p is also not applicable.

In order to see whether or not 1/2’7 provides a good approximation for E|[r] for

this packing sequence, random packings were generated by computer for various values of

y n. The table below displays results obtained from these packing attempts, along with the By

corresponding values of , /2. The notation is the same a before. Estimates of the standard

o

——

deviation of E[r]., are also given since 7 has great variability in this packing scheme.

-y

Although it is not conclusive, the results indicate that, for small p. ,/{; approximates

E[7] reasonably well even in this unusual case. :

-

LY

g

) A
t 7\/2 m— —— .v
n m (9=) \/1'; Elrlm  sd. (E[r}m) Ly
b * i
{ 5 10000 2.35 3.37 0.01 N
: 10 10000 4.40 5.66 0.03 h
15 5000 8.25 9.80 0.07 >
; 20 2000 15.47 17.06 0.20 :'
25 1000 29.00 32.00 0.53 ¥

30 1000 54.35 57.26 0.96

106.50 2.58

9.59
17.20

188.69

365.94

638.79 32.75

AT e

"f

5

The table below compares the distribution of 7 for packing sequences of arcs and

simple cubes for which pis the same. The results for the arcs on the circle are exact, while

the simple cubic results are estimated from the simulation trials.
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E'r sd. (7)

arcs cubes arcs cubes

P

6.56 x 1073 1547 16.23 17.06 T7.84 9.04
1.87 x 1073 29.00 29.75 32.00 14.91 16.67
5.32 x 10°* 54.35 55.11 57.26 28.17 30.40

It may be seen above that ,/{; underestimates E[r] in all cases, but does so more
severely for the cubes than for the arcs. Also notice that the standard deviation of r is

greater for the cubes than it is for the arcs.
1.9. Summary
It has been shown that the approximation

(1.48) E[r]=

'

2p

i AN

Lolds in a wide variety of collision settings. For cases considered for which the distribution

of 7 is known exactly. the two sides of (1.48) are proven to be asymptotically equivalent.
For packing sequences of equivalent points, asvmptotic equivalence is made plausible but
has not been proven. That (1.48) can hold for a packing sequence not possessing equivalent
points was demonstrated by the simple cubic packing scheme. The formula (1.48) does
not hold for arcs of unequal or variable length on the circle: however, note that in these

settings a collision is no longer defined by the simple relation
CinC, & u(C,,Cy) < 6

for some fixed 6.

The approximation formula

2
(1.49) P{r>k}=eT?

has also been investigated. For random arcs of constant length. (1.49) is reasonahly

accurate whenever k < p~2/3. This is suggested by Proposition 1.12 and demonstrated by
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70  Chapter 1. The Tune to the Initial Collision of a Facking Sequence

the results shown in Table A. The results of Table A also indicate that (1.49; can be quite
inaccurate if & > p~2/3. It is reasonable to suppose that the cutofl point p=*'3 occurs in

other packing schemes as well
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Chapter 2

Approximate Packing Densities of
Randomly Constructed Codes

2.1. Introduction

Consider the sequence of points Cy,Cy,- - - chosen independently and uniformly from
S. Each point in the sequence will be considered to be either packed or rejected. A point
will be rejected if and only if it collides with a previously packed point. Otherwise the
point will be packed. Thus C; will be packed. and C, will be packed unless it collides
with C;. Then. letting D, denote the union of all points from among Cy,---,C, which
have been packed. C,41 will be packed unless it collides with some member of D,.

The members of D, are said to constitute a saturated packing if each point in §
collides with at least one element of D,. Thus. if D, is a saturated packing. none of
Ci+1.Ci42.- -+ can be packed and D, = Dyyy = Dy = -+~

Let T be defined as the first time ¢ for which D, is a saturated packing. Call T, a
stopping time, the time to saturation for the packing sequence. Let M be the random
variable defined by

M = #Dr.
Thus M counts the number of points in a saturated packing, and T is the total number
of selections from S, including rejections, needed to reach saturation.

For a metric space (S.u). suppose a suitably defined content v is associated with

each point. Then let the random packing density, denoted by p, be defined as

p= tE[ﬂ{]
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72  Chapter 2. Approximate Packing Densities of Randomly Constructed Codes

If S is finite, the content v may be taken to be (#S5)~1. For this choice of v, the packing

density will be referred to as a center density and will be denoted by r. Hence

Fir

1

. 8
<

>

Random packing problems have been studied by numerous investigators: however.

oA

attempts to obtain exact solutions have been met with very little success except for the

o
N

cases of packing on the discrete and continuous circles (or line segments). The one-

dimensional variations are often referred to as “parking problems™ since the general idea

LA LS

can be expressed by the question ‘How many cars of length a can eventually be parked on

a street of length r if the parking is done at random?". Put this way, it is also assumed

that parked cars are never moved and that cars will move on to other streets if thev cannot

fit next to the curb at their randomly chosen locations.

Random packing problems in spaces of dimensions two and three are also of inter-
est, partiallv because they can be used to model physical phenomena such as molecular
adsorption and liquid and plasma structure. It is also of interest to compare the packing
densities obtained with the density from an analogous one-dimensional case. A conjecture
of Palasti [44] suggests that a two-dimensional density should be equal to the associated
one-dimensional density squared: however, the conjecture has never been proven and nu-
merous simulation studies have indicated that it is not true. More will be said about this

conjecture in Section 2.5.

Solomon {53] reviews the major findings in the one-dimensional settings, and discusses
efforts to approximate densities in higher dimensions by simulation results. A more recent

survey article by Solomon and Weiner [55] updates this material.

The study of random packing densities in multidimensional spaces through computer
generated packings is, in general, difficult due to the extremely long running times required
to perform the random packings. However, if each coordinate of a random point must
assume one of only a small number of possible values, then the time required to achieve a

saturated packing need not be unreasonably long. Random packing sequences on the space

.'.(f ‘w.“' - .'r,'~1. v r~v~~ 2 Y -q - » .V PR
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j Section 2.2: Random Binary Codes 73
of g-ary codewords provide convenient and interesting ways to study packing densities in

5

> spaces of two or more dimensions. Various random coding schemes will be examined in

o

e the next five sections.

N

2.2. Random Binary Codes

Consider the metric space introduced in Section 8 of Chapter 1. and let ¢ equal 2.
Thus S is the space of all binary codewords of length n. There are 2" such codewords,
., and each one can be represented by a unique n-component vector with each component

being either 0 or 1.

3 The Hamming weight of a codeword u is defined to be the number of nonzero com-
- ponents of u, and the Hamming distance between two codewords u and v is the Hamming
N
T weight of u -~ v, where modulo-2 arithmetic is applied. Note that this definition of Ham-
'. . . . . .
by ming distance is equivalent to the one given in Chapter 1.
& . , .
\ Subsets of S containing two or more elements will be called codes. A code is called
‘.d
- M . . .
< an (n.d)-code if the codewords are of length n and the distance between each pair of
N
::: words is greater than or equal to d. The minimum distance d is an important parameter
in the description of a code since it is related to the error detecting and error correcting
\ . . .
~ capabilities of the code. It is possible to detect up to d — 1 errors, where an error is
N said to occur when a bit is recorded incorrectly at the receiving end. Furthermore. up to
.x‘

N [(d - 1)/2] transmission errors can always be successfully corrected.

- Usually codes are constructed by algebraic methods in order to “neatly arrange”
fI

$- the codewords, and hopefully produce (n,d)-codes which have the maximum number of
e . : .

n words. A(n.d) will denote the number of words in the largest possible (n,d)-code. Codes
o constructed algebraically may also have nice properties which make decoding and error
¥
S correcting easier. Despite a large literature, the known “good” codes are relatively few in
1954

o
- number.

- The problem investigated in this section is the random generation of various types

-

v of binary error-correcting codes. While the primary motivation for this work was to learn

2
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N
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X
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74  Chapter 2. Approximate Packing Densities of Randomliv Constructed Codes

something about random packing densities in high-dimensional spaces. 1t is also of interest
to see how the sizes of random codes compare with the sizes of similar codes constructed

deterministically.

Itoh and Solomon [27] consider the random sequential construction of binary codes
for various values of n and d. They begin the construction process by selecting at ran-
dom a single codeword from S. Then the second word is chosen at random from among
all codewords which are at Hamming distance d or greater from the initial word. This
procedure is continued. at each step choosing a new codeword from the collection of all
codewords which are at a Hamming distance of d or greater from all of the codewords
previously selected. The process terminates when it is no longer possible to add another
codeword to the chosen set. This procedure corresponds to the sequential packing scheme
described in Section 1. provided that a pair of codewords are considered to collide when-
ever the Hamming distance between them is less than d. Thus the random (n.d)-code

formed is just a saturated packing of codewords.

Letting M (n.d) denote the number of words contained in a saturated packing. the

center density is denoted

ran = 27 "E[M(n.d)].

This density may be estimated by
fan =2 "M(n,d),

where AM(n.d)is the average number of words packed in a Monte Carlo experiment. That
is, if ¥ random packing attempts result in codes being formed having X, Xz.- -, Xn

words, then M(n d) FZ:-x

The results of numerous packing attempts performed by computer are summarized
in Appendix A. The data for binary cases with 3 < n < 17 are taken from [27]. The data
for cases with n > 17 are results from more recent simulations. It should be noted that
the number of trials per case ranges from 10.000 for cases having n < 10 to only 10 trials

for most cases having n > 17.
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Section 2.2- Random Binary Codes 75

For example. consider the first entrv in Appendix A. This savs ¢ = 2 (a binary
problem ). n = 3 (so binary triples are being considered), and d = 2 (so any two words in
the packing must differ in at least two coordinates). The Monte Carlo estimates for the
mean and the standard deviation are about 3.49 and 0.87. Unfortunately, large standard
deviations are an inherent part of the problem in this case as well as in most of the other

cases considered.

Itoh and Solomon propose that the form n~"¢ approximates the ¥4, reasonably well
for the cases d = 2 and d = 3. where the 44 are constants. Theyv estimate 7, and 43 from
logarithmic plots of the simulation results using the least squares method. Only the cases

for which 10 € n < 17 are used in the fit.

The following tables compare their fitted values with the simulation results. Below,
and throughout the chapter. s.d. will be used to denote the estimated standard deviation

obtained from the sample.

d = 2 cases
72=0.6249
n 2n n7°  (n7% —faq)/s.d.(F2n)
8 0.26914 0.27269 12.7
9 0.25215 0.23334 6.1
10 0.23656  0.23720 5.0
11 0.22324 0.22349 0.9
12 0.21179 0.21166 -0.7
13 0.20187 0.20133 -1.4
14 0.19257 0.19222 -1.5
15 0.18399 0.18411 0.7
16 0.17677 0.17683 0.5
17 0.17018 0.17026 0.3
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LY
d = 3 cases '
> )
- v3=1.319 '_
> . . ) 3
: n T3n n-a3 (n=23 — 7‘3.71)/5-d~('r3,n) L
8 0.06430 0.06435 1.5
N 9 0.05543 0.05509 -13.3
x 10 0.04834 0.04794 -23.2
- 11 0.04263 0.04228 -9.9 y
L
12 0.038%00 0.03769 -12.9
\ (]
- 13 0.03410 0.03392 3.1 v
. 14 0.03077 0.03076 -0.3 J
15 0.02%02 0.02808% 2.9
- ’~
. 16 0.02357 0.02579 14.1 .
g 17 0.02346  0.02381 8.5
It can be seen that the fit is rather good for d = 2 and n > 11; however. the model does &
. not provide a very good fit for the case of a = 3. .
. \
In Chapter 1 it was shown that the expected value of the stopping time 7 could )
-
. be approximated by a simple function of p. the probability that two arbitrary points b
. collide. Similarly, for binary codeword packing. the center densities 74, can be closelv .
X approximated by a function of the ratio £ provided that n is large enough. For the space :
of binary codewords of length n, the content v is denoted by v, and N
- .
. N
{ te = (#S) 1 =27 3
\!
. L&
N Let py,. be the probability that two randomly selected codewords of length n are ;
. . o
separated by a Hamming distance less than d. Then b
) h
N -1
Pdn = 2—712 ( )
1=0 J X ‘.
v L%
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Letting 8, , denote the ratio pgn/vq4n. it follows that

d-1 n
Ogn = Z ( )
=0 J

L RPN AU PR LA

It is found that

L

falBan) = 6704 + auf72%
approﬂmates the observed 74, rather well for n not too small, where the a4 and the 34 ,_S
are constants. The values of these constants are determined by performing a weighted %
nonlinear least squares fit on each set of points 741 (a). Ta,L(d)+1+" "+ FaU(a) (d = 1.+ 10) :‘
using a modified Gauss-Newton algorithm (BMDP program 3R was used). Each case was EE
weighted by the inverse of the estimated variance of #4,. The L({d) were determined by ‘.
trial and error. and were chosen to be as small as possible while keeping the resulting fit ac- ‘\':
ceptably accurate. The U'(d) are chosen to be as large as possible, the values being limited ‘:-
only by the enormous amount of computer time required to perform the simulations. '\5
The following table summarizes the parameters resulting from the curve fittings. :_
p
Parameters determined for binary cases ﬁ
d L(d) U(d) &g B4 i
2 9 17 0.331 0.630 E

3 12 17 -0.870 0.740

4 10 17 -3.20 0.736

5 12 18 -22.1 0.795

6 11 18 -55.6 0.795

7 15 18 -2.04 x 10> 0.833

8 14 18  -7.60x 10> 0.831

9 17 19 -4.48x10° 0.851

10 17 20 -7.68x10° 0.861

The entries in the next table are the residuals, fd(Od‘,,) ~ fgn. divided by the estimated

standard deviation of 74.,.
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Standardized residuals

d=3 d=4 d=5 d=6 d=7
11.9 -6.0 -29.2 - -

11.3 -0.1 -37.5  -39.3

3.0 0.8 -8.7 0.1

0.3 -0.8 -0.3 -0.2

-0.4 0.6 0.9 -0.2

0.5 0.2 0.1 0.7
-0.8 04 0.0 . . - -
0.4 0.1 0.2 . -16.2 -52.7
0.6 -1.4 0.3 . -0.9 -0.3

P2III PSS

-1.6 . 1.1 -0.1
-0.6 2.1

- -1.3

For example, consider the d = 2 entryv of the first table. This shows that the fit

Y
v
B
o
A
P
)
Lol

was done using 72.g,f2.10.* ", 7217, and that these points led to the estimates of 0.331 and

o)

0.630 for a; and 3, respectively. The standardized residuals from this fit are given in the
first column of the second table. For instance, the n = 11 entry shows that j:g(eg‘]l) under

approximates 711 by 0.3 s.d.(f211). Here

PN

f2(6211) = 9;.?% + 5’29;3?2-

Note from the first table above that 83 = 84, 85 = Be, 87 = 85, and F9 = Byo.

IV, SRS

Further note that if B(d) = [4}2], then Sf(k) is approximately constant. This fact will

be discussed further.

..-lnn).l

If the 74, are fit with the approximation

O QJOZZBW,

94(84r) = 67°
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the estimated &4 remain the same as before. The estimate of 3 gotten from each fit
is shown below, along with corresponding estimates of the standard deviation of 3. The

estimated standard deviations are computed with a provisional means algorithm (see {10]).

d B s.d. (B)

2 03975  0.0009
3 04059  0.0006

4 03990  0.0009

5 03985  0.0004

6 03995  0.0013

7 04022  0.0030

& 03962  0.0038

9 03800  0.0126

10 0.4074 0.0148

o

These results suggest that perhaps

-8 Ba
Tdn ~ dn

as n — oc,

for some 3 approximately equal to 0.40. This asymptotic form has the ratio rg,41/7d.n
tending to 1 as n tends to infinity, in agreement with an observation made by Itoh and

Solomon [27]. As with other packing settings, there does not seem to be a simple heuristic

argument which suggests the limiting form of the densities.

A Comparison with the Hamming Bound.

A MY

:~;‘ The Hamming, or sphere-packing, bound for codes guarantees that any t-error-
!L ) correcting binary code of length n containing M codewords satisfy

o

o n n n

‘. e < on

;-. e (1)« G) e ()]
."' (see {38]). Since the number of bit errors an (n,d)-binary code can successfully correct is
o
] "‘

5 [(d-1)/2)} |
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M N

g

the bound implies that the number of words in anyv (n,d)-code cannot exceed

L)

o -1

1) n /n n

o 2 1+k ot ey

e 1 (5%5)

N
A\
- if d is odd, and the number of words cannot exceed

n n -1
2 [ (1) ot ()]
1 (52)
if d is even.

',' :' It is also true that any saturated packing which constitutes an (n.d)-binary code
v

':; must contain at least

~

o) ()

words. This follows from the fact that the addition of each new word to the packed

collection can decrease the number of available sites by at most ¥ 9=} ('J’)

:':' 1=0
-
b’ The above bounds can be used to establish the facts that

<+
N -1
o rd,nzL(d-n)=[1+(")+---+< i )] ,

N 1 d-1
\ o
P and

n : 1

[1+ ")+--~+(d";,)] (d odd)

“ ram < U(d,n) = . SR
a [1+ M+ + ((i’zl_,))] (d even).
g Table B contains the ratios #¢,/L(d.n), and Table C contains the ratios #¢,/L(d, n).

-

‘- From an inspection of these tables it can be seen that if d is held fixed and n is made
','z larger, then the ratios of form 74,/L(d, n) tend to increase with n, while the ratios of the
B
. f-‘ form 7#4/U(d,n) are decreasing as n increases.
1 A

o,

- Now if the proposed asymptotic form for r4, given by

& e

" -g B

:: R(d,n) = 6,

<2

,F

P is correct, then as n becomes Jarge

2 R(d,n)/L(d,n)

N3

'

5}

..l

vt

1. :

T T A
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The entries of this table are the ratios #4,/L(d, n)

n d=2 d=3 d=4 d=5 d=6 d=7 d=8 d=9 d=10
3 1.75 - - - - - - - -

4 1.94 - - - - - - - -

5 2.08 1.94 - - - - - - -

6 2.21 2.14 2.21 - - - - - -

7 2.32 2.25 2.37 - - - - - -
8 2.42 2.38 2.99 2.43 - - - - -
9 2.52 2.55 3.32 2.43 2.45 - - - -
10 2,60 2.71 3.63 2.86 2.76 - - - -
11 2.6 2.86 3.95 3.20 3.21 2.74 - - -
12 275 3.00 4.30 3.51 3.82 2.44 2.67 - -
13 283 3.14 4.56 3.84 4.37 3.03 2.81 - -
14 2.89 3.26 4.88 4.17 4.82 3.58 3.05 2.88 -
15 294 3.39 5.22 4.48 5.35 4.19 3.86 2.79 2.72
16 3.01 3.50 5.46 4.78 5.81 4.62 4.68 3.17 3.03
17 3.06 3.61 5.70 5.09 6.21 4.93 544 3.50 2.88
18 - - - 5.34 7.10 5.44 6.18 4.19 3.91
19 - - ~ - - - - 5.12 4.25
20 - - - - - - - - 5.68
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7
’.
'
, Table C
\ﬂ
;: The entries in this table are the ratios 74,/U(d, n)
R
L~ y
o d=2 d=3 d=4 d=5 d=6 d=7 d=8 d=9 d=10 ‘
3 0437 - - - - - - - -
o 4 0388 - - - - - - - - )
M
> 5 0346 0727 - - - - - - - ‘
I'
v 6 0.315 0.680 0.368 - - - - - -
: 7 0.290 0.621 0.321 - - - - - -
= 8 0269 0579 0290 0551 - - - - - ,
"’ »
b 9 0252 0.554 0256 0.437 0.295 - - - - ‘
10 0.237 0.532 0.227 0.415 0.242 - - - -
o
:: 11 0.223 0.512 0.204 0.382 0.210 0.42R - - -
" h
" 12 0.212 0.494 0.187 0.350 0.130 0.291 0.242 - -
- 13 0.202 0.477 0.169 0.323 0.169 0.280 0.183 - -
.'_: 14 0.193 0461 0.156 0.301 0.147 0.260 0.145 0.329 -
N 15 0.184 0.448 0.145 0.279 0.131 0.243 0.136 0.237 0.190 ,
s 16 0.177 0.435 0.133 0.260 0.116 0216 0.124 0.204 0.151 '
N 17 0.170 0.422 0.123 0.244 0.102 0.189 0.110 0.172 0.103 q
o 18 - - - 0227 0097 0.172 0.097 0.159 0.102 ]
P> 19 - - - - - - - 0152 0.082 X
o
20 - - - - - - - - 0.082
.: s
.. ¢
. ]
b ) {
N !
' 1]
; (|
) 'n
s ]
]
2
4
.( A - 'f',‘_) N '5,"’1..-..’-,’-\' \ '| -» ) .. - N -, I,( T "a"d",' X, f(',f,._- v ) \ ' l .. l.b.*'"-,._ A ,0;.|\ N AGSY v—-v‘-. w SO0 .!“"“6
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should tend to something greater than or equal to 1. Similarly,
R(d,n)/U(d,n)
should approach something less than or equal to 1 as n becomes large. It will now be
shown that the first ratio tends to infinity, and that the second ratio has a limit of zero.
Note that L(d, n) is equal to 0;}1, and so
o)
R(dn) _ 6,
— ]}
n L(d,n) n 0;3;

{I-Bm}
dn .

=1limé ‘

Since

od.n = O(nd-l)»
and since
1- Bﬁ") >0
if 3 is about 0.40, it follows that

. R(d.n) _
2 Tdm)

If d is even then
U(d,n) = 67!,
f,ﬂ
and it follows that

R(d,n)

— X(d)
T - 0

where

X(d) = g- ] (d—1)377.

Now putting 2 in for 4 and replacing B(d) by %42 yields

d- i+
xy=2-w@-n ()7,

O

P8

T Y Y Y Ny

e (W g

ey
X

8 1Y

-.}’i\(‘-(w' :, g

g
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which is less than zero for all even values of d greater than or equal to two. Hence it now

follows that
. R(d,n)
o, T(d,m)

for even values of d. It may similarly be shown that the above result is aiso true for the

=0

case where d is odd.

The above results indicate that the proposed asymptotic formula, R(d. n). is consis-
tent with the Hamming bounds. Another well known bound on the size of a code, the
Plotkin bound, cannot be treated in a similar fashion. This is because the Plotkin bound
only applies to cases for which n < 2d. Hence it is not possible to discuss its behavior
when d is fixed and n is allowed to become large. It is also not very meaningful to compare
the observed sizes of the random codes with the values of the maximum code size A(n.d).
This is due to the fact that the values of A(n,d) are not known in all cases, and also

because the values which are known tend to exhibit somewhat haphazard patterns.
2.3. Nonbinary codes

Nonbinaryv codes may also be sequentially constructed using the method described
in the previous section. If m is a prime number, and ¢ is any power of m, then a code
with symbols from the Galois field G F(q) is called a g-ary code. An (n,d)-g-ary code is a
subset of n-tuples over GF(q). The n-tuples, or codewords, are such that the Hamming
distance between any pair of them is greater than or equal to d. As before, the Hamming

distance between two words u and v is just the Hamming weight of u — v.

Ternary, or 3-ary, (n, d)-codes were stochastically formed by computer for2 < d < 7.
As was the case for the binary codes, it is found that the observed 74, can be approximated

by expressions of the form
fa(Ban) =072 + agf73%.

Note that for g-ary codeword packing the ratio p/v is given by

d-1 n _
ban=)_ (].)(q - 1)

3=0
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The results of the random packings are summarized in the two tables below. The notation

is the same as before. and additional details concerning the simulation results may be

found in Appendix A.

Parameters determined for ternary cases

G4 B4

d L(d) U(d)
2 5 9
3 7 9
4 6 10
5 8 10
6 9 11
7 10 11

—-4.53 x 10?2  0.632

-1.52 0.742
-10.4 0.764
-33.5 0.803

-2.32x 102  0.819

-1.20 x 103  0.836

Standardized residuals

n d=2 d=3 d=4 d=35 d=6 d=7
5 0.6 6.0 3.8 - - -

6 -0.6 6.2 -0.4 - - -

7 -0.3 -0.3 0.4 14.8 -

8 0.0 1.4 0.5 -0.2 -23.2 -

9 0.4 -0.5 -0.8 0.3 -0.1 -43.9
10 - - 24 -1.4 1.0 0.0
11 - - - - -0.4 0.0

It is interesting to note that the values B, and B3 are very close to the corresponding

values for the binary case. It may also be noted that if

then the values Bf(d) (d =2,.-+,7) are approximately equal to one another, and therefore

B(d) = {

2

they are all near some unknown constant 8.

H43 d>2

d=2
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Estimates of 3 from the ternary cases

]
O, A
ph: d B
& 2 0.399
i 3 0.408
)l
L. 4 0.390
<
5 0.416
NS
s 6 0.408
w T 0.407
&
b . :
vy Similar to the binary case. these results suggest that
. 0-3#3
o Tan ~ 05 as n — o,
v,
v .
’ for some 3 approximately equal to 0.40 or 0.41.
'
Y It is also interesting to compare the pattern of the values of Var(AM(n.d)) in the
™
N ternary case with the pattern found in the binary case. For the binary case. Itoh and
o Solomon [27] observed that the variance of packing density is larger when d is even and
I
\
:z smaller when d is odd. Also it may be seen from Appendix A that the ratio
- Var(M(n.d))/Var(M(n,d + 1))
3, ':
S is generally greater than one when d is even, and generally less than one when d is odd.
3
-
- This pattern is not evident for the ternary data, as it may be seen from the results given
'{3 in Appendix A that the above ratio is greater than one for all d. For the ¢ = 4 and
A
™. g = 5 cases, the values of M(n,d) also strictly decrease as d increases (with n held fixed):
.;‘ however, it should be mentioned that there is insufficient data in these cases.
N For ¢ > 3, packings could be generated for only small values of n due to limitations on
‘
L computer time. However, for each combination of ¢ and d the values of —log 74../log8,»
K- suggest that perhaps
7 Tdn ~ 0;'"2‘ as n— oo
KN
4
-‘

L) ]
d
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Section 2.4 Packing by Lee distance 87

holds for ¢ = 4 and ¢ = 5. The tables below give the observed values of — log 74.n/ log 4.

for ¢ = 4 and ¢ = 5. Additional simulation results may be found in Appendix A.

Estimates of the 34 from the 4-ary case

qg=4
n d=2 d=3 d=4
3 0.679 - -
4 0.664 0.748 -
5 0.637 0.754 0.812
6 0.654 0.754 0.798
7 0.654 0.752 0.789

Estimates of the Jy from the 5-aryv cases
g=5

n d=2 d=3 d=4
3 0.695 - -

4 0.679 0.758 -
0.671 0.753 0.803

WY

6 0.667 0.754 0.800

2.4. Packing by Lee distance

The Lee distance between two g-ary codewords x = (zy,---,zp)and y = (y3.- . y»)
is given by
n
u(x,y) = Y v(zi, %)
=1
where
la — b] if ja - b| < q/2
v{a. b) =
g—la—0bl otherwise.

Two codewords are considered to collide if the Lee distance between them is less than

some fixed c € {1,2.--}.

Note that Lee distance is the same as Hamming distance if ¢ is equal to 2 or 3.

But for larger ¢, Lee distance is a more sensitive metric since the contribution from each

RO R AN

,\J‘\J'..d' o, \
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! coordinate can be something other than just 0 or 1. Lee distance is sometimes used by

R AT NN 2

coding theorists because it is well suited to phase-modulation. (The Hamming metric is

well suited to orthogonal modulation schemes.) -
L,
Consider first the case where n is equal to 1. Then the metric space employing the E
Lee metric is identical to the one described in Section 3 of Chapter 1. A random packing 0,
on this metric space may be viewed as placing at random arcs of length ¢ on a circle -;:,
of circumference q, with the endpoints of the arcs being situated at integral coordinates. e
o
Nonoverlapping arcs are packed until the length of the longest segment of the circle not i
covered by an arc is less than ¢. Thus, this somewhat degenerate codeword packing -
it
problem is just a variation of a discrete. one-dimensional parking protlem. :
~)
Let AMf; ., denote the number of arcs in the saturated packing. and let the content v
’
of each packed point be 5, which is just the proportion of the circle covered by each arc. -
Ly
Then the random packing density is given by ;
2
{
¢ d
Preq = —E[Mjcql. é
l.c.q q [ l,c q] !
which is just the average proportion of the circle covered by a saturated packing of arcs. :: 3
5
- . .o . . . ’
Note that py ;4 is trivially equal to 1, since eventually every segment on the circie will be '2
’
covered by a packed arc. -
o . . 2]
Page [43] and Downton [12] have studied this packing sequence for the special case )

of ¢ equal to 2. They proved that as g tends to infinity, p; 2,4 tends to the finite limit

SrEY

pr2=1— e 2=0.8647.

.l" .. .‘. ‘.. ‘l

Using some results of Mackenzie [36], it can be proved that for ¢ € {1,2,--}

Y Yy

| Plcg — Pl a8 G — .

X R AW

where the sequence of limits {p; .}3%, remains finite as ¢ tends to infinity. In general. p; .
must be obtained by numerically integrating an expression which arises from a recurrence o

technique. However. it is trivial that p; ; = 1., and for ¢ = 2 the required integral may be

. o . R : . i . f
‘ M)mf v O S o OO G e i W A WS S NN G G, 2 T S NS PN G P,
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LSRR R
.

5

evaluated in closed form to vield p; 2 = 1 — €2 in agreement with Page.

Mackenzie's work also suggests that

Cons 5"

|
8
S

0.2162 0.0360
c +

(2.1) p1c — 0.7476 + .
[

.

The first two constants are obtained in {36] via numerical integration; however. the co- -~
N
: . . . . X
efficient of ¢~2 has been estimated empirically by Mackenzie. For ¢ > 2. (2.1) gives p, . 00
o
correct to four significant figures. &>
It should be noted that 0.7476 is the asymptotic packing density for arcs placed ;'\
uniformly on the circle. This value. denoted by p; . was first obtained by Rényi [47] and. )
+
to be more precise. it may be defined by h
»
'
P1. = limpy(a), Ta
al0 ".-g_
L
3
where p.(a) is just the average proportion of the unit circle which is covered by a satu- rﬁﬁ-
”
rated packing of arcs of length @ whose centers are chosen according to a uniform (0.1 »
distribution. Blaisdell and Solomon [4] found that 2
.f:‘
o
P1oc=0.74759 79202 53398 o
-
by developing explicit bounds which can determine fifteen significant digits correctly. '-J'::
2
S
Now consider cases for which n is equal to 2, and where two points collide wlen- o !
'
ever the Lee distance between them is less than d € {2,3,---}. This is a discrete two- e
[
dimensional analog to the one-dimensional packing problem considered previously in this -
i
section. In general, parking problems in two-dimensions are notoriously difficult and resist e
m .l
$ -
all attempts at mathematical solutions. '_'.
..
Some simulation results are summarized in Appendix B. Letting Af; 4, denote the 3-,‘
o
number of points in a saturated packing, these results indicate that the center densities -
‘e
-2 *r3
T2dq=q E[M24,] W)
»
v g
are approximately eonstant for each fixed d and various choices of ¢ > 10d. Hence it seems N
WIod
Ly,
-
L ] ‘/
| 2
'.\ 4
4
I Tt i I e R IR I o S U T L S R B R . w » i SR A Y ""\
e e L e s e Sl A A A O A A AN A e e B D2 TP T ¥
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likelv that

Todg — T2d & ¢—x (d2>2)
for some undetermined sequence of values r33,723.724.---. For example. consider the
eight entries having n = 2 and d = 3. These results certainly suggest that the 2.3, Ma)

tend to a limit around 0.1398 as ¢ becomes large.

Let 73 4, denote the observed average of q-z.‘lg_d_q for all simulation trials performed
with parameters d and g, and let #; 4 be the average of all of the 7, 4, for which ¢ > 10d.
The values 7; 4 (d > 2) shown below will serve as estimates of the limiting values r; 4
(d>2).

Estimated limits for the center densities

d T24d

2 0.3642

3 0.1398

4 0.08025
3 0.04903
6 0.03415
T 0.02453
8 0.01882
9 0.01467
10 0.01186

11 0.009722
12 0.008176

Although it is difficult to approximate the above limiting densities analytically. sev-
eral relationships among the center densities can be observed. In what follows, a scheme is
developed for producing planar densities from the center densities. Then it will be shown
how relationships among the limiting center densities and among the limiting planar den-

sities can be approximated by simple functions of the parameter d. Finally, it will be

shown that both approximation schemes can be used to produce estimates of an overall
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Section 24 Packing by Lee distance 91

Brating wavie o, . and that the two methods produce estimates which agree closely with
a4 o
Let 8., = ¢°p. 4,. where pp 4, is the probability that two points collide in the (d.q)
case. Then
d-2
02‘42 l+4Z(d- 1-1)
=0
=2did-1)+ 1.
Now suppose that eacl, packed poiut serves ac the position o of 2 “dianmond”

shaped configuration of v 4 points which are fixed relative to the position point. The
contents vyg.tz.3.lz24.- - are taken to be as large as possible. subject to a constraint
requiring that the diamonds surrounding two disjoint points should contain no conuon
points. For d odd. v3.4 = (d° + 1)/2. The diamond consists of a row of d poinuts centered
on the position point. and sandwiched around this row are pairs of successjvels smalier
rows of d — 2.d — 4.---.3. and 1 points. each centered on the position point. For d even.
v9.4 = d?/2: however. it is now not possible to have the position point being at the exact
center of the configuration. The diamond consists of a row of d points. sandwiched between
pairs of rows having d ~2.d - 4.---.4 and 2 pv"~*t< The position point is one of the two

centermost points.

Even though the diamond shaped c. .Agurations described here will not overlap if
they are positioned on disjoint points, the packing problem considered here is not always
the same as the problem of packing such oriented diamonds on a g by g torus shaped lattice.
The problems are different if d is even. This fact can be established easily for the d = 2
case. since it is clear that the two “diamonds™ {(r.s),(r+1.s)} and {(r,s+1),(r+1.s+1}}
do not overlap even though the Lee distance between the position points (r.s) and (r,s+1;

is less than two. A similar argument can be used to handle any other even valued d.

Define limiting densities {p24}3, by

prd = 24724 (d 2> 2).

.\'“l" o x“)"".‘ ‘.
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82  Chapter 2 Approximate Packing Densities of Randomiy Constructed Codes

and let
ﬁ?.d = 1‘2.di'2.d (d = 21 Y 12)
estimate p; 4. The values of these estimates are given below. Note that for each even

value of d. p; 4 is much closer to p2 441 than to jg 4.

Estimates of limiting planar densities

d Prd

2 0.72848
] 0.69876
4 0.64197
5 0.63743
6 0.61464
7 0.61331
8 0.60233
9 0.60127
10 0.59317
11 0.59305
12 0.58866

Unlike the n = 1 case, the py 4 are not given by an expression similar to (2.1):

however. several relationships among the p; ¢ and the r; 4 are apparent. Letting
Ad = P2,d-l/p2.d+l (d= 406080"')
and
64 = 12.4/T2441 (d22),
it may be seen below that

2
LD

Ad pr

approximates Ay and that

0441/04 (d even)
d, =
T 143+ %-F (dodd)

LA LR |
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L
_ approximates © . A4 is defined by p2.4-1/P2.4+1, and éd is defined similarly.
"‘: Comparison of approximation with estimates
.
‘ d Ag id
4 1.09& 1.096
6 1.038 1.039
8 1.020 1.020
10 1.012 1.014
>,
.
v
v, . . . . .
. Comparison of approximation with estimates
:‘,:
[ .
" d P Oa
s 2 2.600  2.606
"’ - -
o 3 1.741 1.742
N 4 1.640 1.637
N
N 5 1432 1.436
oY
» 6  1.393 1392
s
T 1.303 1.303
P & 1283 1.284
of
:: 9 1.233 1.236
"
3 10 1.221 1.220

11 1.189 1.189

r2EES

The expression

T

(2.2) Prd-1/Pras1 = 1+d 4 (d+1)? (d=4,6,8, )

Y

and the values g 4 (d = 3.5.7.9.11) may be used to obtain approximations for

P2~ = lim pygq.
d=—oc

ASNAY
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It {follows from (2.2) that

-1
[~ <]
. 2k +1)2 .
(2.3) P.x X P2.2;-1 [1 + L@T)")_] (7=2,3,--1).
k=;
Using

o (2k + 1)

I1 [1 MRTTS)

—~ 4k 4+ 4k +1
16k

> 1.010226

and

~ - (2k +1)2
(2k)4

B — (2k +1)?

= exp {gslog [l + —W] }
— [4k> + 4k +1

<exp{z [ 16k4 ]}

—

k=25

k=25

1 [x2 A 1 [®/4 1
<exp{-{—-S"k"2) 4= —+—=)d
e"p{4(6 :L_? >+16/,. (z3 z:‘) *
< 1.010476

it is possible to obtain upper and lower bounds from (2.3) which are not too burdensome

for d equal to 3,5, 7.9, and 11.

PN PR AR AT R R I R L A Y T N Ll T g A A e P - s AT EC W ta A M- oa
" d ' g P.» .-.n A \'u i -‘..‘ 'p‘\ T "i '.. \\‘ .y '\ "p } "-f\?\ ‘-"o.\\‘- \.- \“ \,\"\ )

to compute. Given below are upper and lower bounds of p; ., based on the estimates p, 4.
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N
Y
) (]
Bounds of p3 . obtained from (2.3) o)
(d=2j-1) %
d lower bound upper bound '
3 0.5656 0.5658 g
5 0.5664 0.5665 z
7 0.5655 0.5657 »
bty
9 0.5654 0.5655 ke
11 0.5644 0.5646 .
“
. L
Alternatively, :::
[= <]
Vak vy
P2.d/P2.00 = H ( - Ok) Ve
ke=d V2,k+1 ’
¥ o~

suggests that p, » may be approximated by

260000 vak -1
(2.4) fz.dl‘z.d[n( . ‘Pk)} .

eg \U2k+1
Note that the product is truncated so that it can be evaluated by computer. The estimates

of py.~ obtained from (2.4) and the 724 (d = 2,---,12) are given below.
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upper and lower bounds provided by the previous method. Assuming that the variation
in the estimates is due to chance. it seems reasonable to suppose that p; o, is some value
close to 0.565 or 0.566. It should be noted that these estimates were obtained by assuming
that the densities really do follow the pattern observed above. It is not feasible to check

out the accuracy of the approximations by performing Monte Carlo experiments using

Chapter 2. Approximate Packing Densities of Randomlyv Constructed Codes

Approximations of p; o, obtained from (2.4)

10
11
12

extremely large values for d.

n = 3,4,---. Similar to the corresponding Hamming distance cases, it appears that the

ratios —logra.n/loghr, (n = 3,---,7) are approximately constant. suggesting that the

(2.4)
0.5671

0.5657
0.5654
0.5666
0.5650
0.5657
0.5656
0.5655
0.5641
0.5645
0.5646

densities might be asymptotically equivalent to

for some 3;. where 8,, = ¢"p=2n + 1.
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Estimates of 3,

n  —logfyn/loghyn
3 0.596
S
4 0.597
_I: 5 0.602
Ny 6 0.604
.
< 7 0.607
A Likewise, the corresponding ratios for the d = 3 cases tend to approach a constant 33 as
N
V) n becomes large. Here 83, = q"p=2n%+ n + 1.
~
. Estimates of 33
- n_ ~logfsn/loghsn
. 4 0.760
o 5 0.753
i 6 0.749
&)
y 7 0.747
"% .
he 2.5. Other metrics
- Square Box Metric
]
‘-:: Consider packing on the space of g-ary codewords of length 2 using the metric given
p
o by
. p(x,y) = max{v(zy, ). v(z2,¥2)},
2
j: where v is a metric defined in the previous section. If two points collide whenever the
5 distance between them is less than ¢, then the packing sequence corresponds to packing ¢
. by ¢ blocks of points on a ¢ by ¢ torus shaped lattice of points so that the packed blocks
>
' are pairwise disjoint.
g
; For various combinations of ¢ and gq. the packing sequence described above was re.
4
peatedly simulated by computer. The results of the computer trials are summarized in
B
:‘, Appendix C. For example, the first five cases given in Appendix C show the results of
X
P

W P -f\' W WY WS LW S o, 'u"f__f

o
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packing 2 by 2 blocks of points on torus shaped lattices of five different sizes. The sizes
range from 23 by 23 to 35 by 35. In each of the five cases, it can be seen that the average
planar density observed does not differ much from the overall average of 0.747 obtained

from combining the results of all of the cases.

Letting Af. ; denote the number of points in a saturated packing. the random packing

density may be defined by

Peq = (Cz/qz)E[Mc.q]-
Based on the simulation output and the knowledge that an analogous metric in a similar
one-dimensional setting produces limiting densities, it seems reasonable to expect that

Pcg —Pc a8 q@q— X

for some sequence {p.}%,. Letting p., denote the observed average of (¢?/¢?)M, .. p. is

estimated by averaging all of the j., for which ¢ > 10c.

Similar to the n = 1 case of the previous section, it is found by curve fitting that the

p. can be closely approximated by an expression of the form
(2.5) 3o+ B1c™! + Bac™2

Performing a least squares fit on the values fp,, p3,- - -, pg yields the approximation

0.3142 0.1092
¢ + '

pe = po = 0.5626 + =

It may be seenr below that this approximation formula does rather well. Also shown below

are the least square estimates based on the model

(2.6) Pc = poo'Vl/C,
which are given by
pt = 0.5622(1.766)'/°.

It should be noted that while two models yield fits of almost identical quality. the model

given by (2.6) has one less parameter than the model given by (2.5).

N
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g

' Results for square box metric

o

1 ¢ e . pr sd (5)

.‘-'.E 2 0.7470 0.7470 0.7470 0.0007
' A 3 0.6794 0.6795 0.6795 0.0007

2 4 06483  0.6480  0.6480 0.0007
a :_i: 5 0.6301 0.6298 0.6299 0.0005
™ 6 06177  0.6180  0.6180 0.0005

o T 06092 06097  0.6097 0.0006

8 06029  0.6036  0.6036  0.0007

v 9  0.5999  0.5989  0.5988 0.0007

-

_‘.',- Note that both models yield nearly the same value for py o« = lim._... p.. Tle first
Eé model gives p;.o. = 0.5626, while the second model gives p; .. = 0.5622. p, .. may be
‘ interpreted as the limiting proportion of a unit torus covered by a saturated packing of
: squares of area v as v tends to zero, when the centers of the squares in the packing sequence
:: arise from a uniform distribution over the torus.

:-: The values of the quantity
2 A1 = /Pix ~ Prox

-

:'; produced by the two estimates of p; », are 0.0025 and 0.0022. These agree closely with
-_;’ the estimates of A, obtained by other authors. Akeda and Hori {2}, Blaisdell and Solomon
:‘ [4], and Jodrey and Tory [30] estimate A, to be 0.0027, 0.0025, and 0.0021, respectively.
.:- All of these estimates serve to refute Palasti’s conjecture (see [44]) that py oo = p? . It is
interesting to note that although the quantity p; o discussed in the previous section may
ﬂ: be interpreted in the same way as p; o, from this section, its value was estimated to be
-E slightly larger by the methods of Section 2.4, being around 0.565 or 0.566.

..

o Simple Cubic Metric

, Now consider the simple cubic packing sequence on the space of ternary codewords
: :

B

ARAN
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100  Chapter 2. Approximate Packing Densities of Randomly Constructed Codes ::
| .
"
I
. . . . . p ¢
of length n. This packing scheme is described in Section 1.8, and has been discussed by
previously by Itoh and Udea [29] and Itoh and Solomon [27). A
: , . . a
Letting M, denote the number of n-tuples in a saturated packing the random packing
density is given by i
pn =2 "E[M,). »
,'.‘.
A
This follows from the fact that the content v associated with each packed point is equal oy
to 2"/4" = 27" It can be seen below that an expression of the form :::
n_-=0 '
a"n""/logn Y
Y
-~
fits the observed p, rather well for n not too small. Performing a weighted nonlinear o
Ay
regression on pr. - -+, p1; vields the approximation >
[ ]
(1.031993)" ;f_l‘

Prn = Pn = —sosi——-
n n n0.215237 logn

The data is taken from [27]. Note that this model does not have the ratio p"*!/p, tending

to 1 as suggested in [27).

Comparison for the simple cubic packing scheme

TSRS s

n Pn pn s.d. (bn)

5 0.5144  0.4927 0.0010 -
6 0.4585  0.4508 0.0008 f‘.%.
7 0.4214  0.4212 0.0005 E :
8 0.3955  0.3958 0.0007 >
9 0.3766  0.3762 0.0012 R
10 03625  0.3631 0.0018

11 03519  0.3516 0.0013

2AATE N o

2.6. Complementary codes

x._:".‘,.- y

In Section 2, random binary (n,d)-codes were formed by adding randomly chosen

S
words to a packed code if the selected word was at a Hamming distance of d or more from >
e
)
]
[
oy
S
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each word already in the packed set. This section will also consider stochastically formed

binary (n.d)-codes: however. now the criteria for packing new words will be different. Be-

fore describing the packing scheme and presenting the results, a few additional comments

concerning error-correcting codes will be given.

For fixed n and d it is clear that information can be transmitted at the greatest

rate whenever the number of words in the code is as large as possible. A(n.d) denotes

-

~
- the number of codewords in the largest possible binary code of length n and minimum
i distance d. A(n.d}is known precisely in some cases. while in other cases only upper and
fl lower bounds are known. MacWilliams and Sloane [38] give relations involving A(n.d).
:' 5 discuss the bounds on A(n.d). and give values where known. Their book also serves as
N

an excellent reference on the coding problem in general, as do the books by Peterson and

Weldon [43] and Lin and Costello {33].

Several of the most familiar error-correcting codes exhibit quite a lot of structure

A(n.d).

and contain the maximum number of todewords, Perhaps the best known of

“ such codes is the Golay codes. This code has length 24 and minimum distance 8. It has
" A(24,8) = 4096 codewords and the Hamming distance between any pair of codewords
D
v
N is either 8, 12. 16. or 24. The Golay code belongs to the class of linear codes and has

numerous interesting structural properties. see Thompson {58]. Among these properties is

the fact that if u is a codeword then so is u*, where u* is the complement of u. i.e. u™ has

a one in each position where u has a zero and vice versa. Codes possessing this property

will be called complementary codes.

\ For various combinations of n and d, complementary codes were stochastically gener-

\: ated using a computer. Each of the resulting codes possesses the additional property that

- the Hamming distances between all pairs of words belong to a restricted set of values. A

: code word of this type having words of length n can arise from the constrained random ]
E packing of binary (n ~ 1)-tuples using a procedure which will be outlined below.

-, ,

Itoh (see [26]. [28]) shows that it is not too difficult to stochastically generate a (24. 8)-

code of size .4(24.8). and in about 18% of the possible complementary coding schemes

P, v Tt .
..'f" - .'VNT.' L4 ", ‘ " -\'NI.I\'.JI " ' _v_ IA"'\J

A

AT TR W R « -y - P S
.-. '. A" A \ "" - 4"‘--’ '\v'.- -'-\‘



[ully

SV

<

'.". ) i }'}h

[ Wt B D RS 4

"% X v
> -"1}1 A

N

ANES

S T e

LG8 5%y

"

L )

Ve

S
oy
A

102  Chapter 2. Approximate Packing Densities of Randomly Constructed Codes

with 4 < n < 12 at least one random packing resulted in a code of size A(n.d) being
formed. Naturally. the unrestricted packing scheme of Section 2 may also produce codes
of size A(n,d); however, this was observed in only a few of the low dimensional cases. In
some cases (for example. (n.d) = (24.8)) it has been shown that any random code of size
A(n.d) must be equivalent to an algebraic code of size A(n,d) possessing nice properties.
However, it has not been established that all random codes of size A(n,d) are equivalent

to algebraic codes.

Thus it may be possible to find large codes by restricted random packing. and given
the close connection between error-correcting codes and the packing of n-dimensional
splieres (see [34}). denser sphere packings are also possible. It is interesting to note that
extremely dense packings have also been generated stochastically via simulated annealing

(see [13}).

Now the packing procedure will be described. Letting K denote the set of allowable

interword distances. require that'X be of the form
{d.dl.---.dm.n—dm.-u.n—d].n—d,n}

where d < dy < --+ < d,, € n/2. Sequentially choosing (n — 1)-tuples at random from
the set of all binary (n — 1)-tuples, a new selection is added to the packed collection if
the Hamming distances between it and all previously packed selections are elements of X.
Continuing until it is no longer possible to add to the packed set. codewords of length n
are formed from the (n — 1)-tuples by adding a zero as the nth component. These words.
plus their complements, constitute an (n, d)-complementary code having the property that

the distance between any pair of words belongs to K.

Every such complementary code having 4 < n € 12 and 2 < d < n/2 was repeatedly
generated. In each case the average observed packing density was calculated. For n and
d both even, the densest codes arose from K containing n and all even integers between d
and n — d inclusive. In these cases the complementary codes formed are denser than the

corresponding (n.d)-codes constructed by the method of Section 2. For all other choices

R ._-:.. P -‘, '--.‘R’ -'. . -F Jv‘. .'.- !l.. -', I’P - A l \_‘* “’ - ,"‘\
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A
Nl
. of n and d. the densest complementary codes were generated by having X' = {d.d +
z,' l.---.n~d~1.n—d.n}. The simulation results are summarized in Appendix D. Siuce
)
M .
N the random complementary coding scheme generally produces large codes more frequently
than the unrestricted random coding scheme, and since for the same choice of (n.d) the
P~ .
. complementary codes can be produced more quickly by computer (remember. (n—1)-tuples
e
ll - . . .
N are being packed in the complementary case), it seems that random complementary coding
JI
A . . . .
a may be superior to unrestricted random coding in the search for n.w large codes.
= Simulations were avoided for the cases covered by the two results below. These facts
N . . .
~ follow from the following lemma whose simple proof is omitted.
N
N
~ Lemma 2.1. The Hamming distance between a codeword of even Hamming weight
> and a codeword of odd Hamming weight is odd. Otherwise the Hamming distan. = betweon
o two codewords is even,
i Fact 2.1. Stochasticailv constructed (n.d)-complementary codes with X = {d.d;.
! ldmn—dp.---.n—dy,n—d.n}, whered.dy.---.dn.n—dm.---.n—d; and n - d are
N
b all odd, will contain exactly four codewords.
'--
3 . Fact 2.2. If n is even. then a stochastically constructed (n,2)-complementary code
with A containing all even integers between 2 and n ~ 2 inclusive will contain exactly
’l
- A(n.d) = 2"! codewords.
[~ » For the class of (n.2)-codes having X = {2,3,---.n - 3,n — 2,n}, a model similar to
0,
) those of Sections 2 and 3 seems to fit the observed densities for n not too small. That is.
. letting 6, ,, equal
':.'_f 2"~! P{two arbitrary (n — 1)-tuples collide} = n + 1,
o
it is found that the densities are reasonably approximated by
o
- - - * -2(0.6147
(2.7) 706147 _ 0,13696; 2147
) forn > 9.
.. -
. Results for cases with K — {n} = {2.3.---.n - 2}
b
-,
' ,
.
¥
’l
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Similarly. letting K = {3.4,
by

(2.8)

for n > 11, where

n 1 (2.7)
T 0.230 0.289
8 0.272 0.268
9 0.251 0.251
10 0.235 0.236
11 0.225 0.224
12 0.212 0.212
13 0.204 0.203
14 0.193 0.194

.--,n — 4,n — 3,n} produces densities that are approximated

6527753 + 4.3400

03, =

-2(0.7753)
3.n

n?+n+2
2 .
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Results for cases with X' = {n} = {3.4.---.n = 3}

n r (2.8)
10 0.0526 0.0462

11 0.0448 0.0450
12 0.0387 0.0385

13 0.0339 0.0335
14 0.0300 0.0305

2.7. Summary

For randomly packed g-ary (n.d)-codes. evidence has been presented which suggests
that as the dimension n tends to infinity. the center densities are asymptotically equivalent
to expressions of the form

(p/v)™.

. Here p is the probability that two arbitrary codewords collide. and v = ¢~" is the content
associated with each point in the space. This was demonstrated most convincingly for
the case of binary codewords packed by Hamming distance, where additional relations
involving the 34 were also found. Support was also given for some g-ary cases. and for a

case where Lee distance was used as the metric instead of Hamming distance.

Relations among the packing densities were also found in cases where n was set equal
to 2 and ¢ was taken to be large. One such two-dimensional scheme vielded an estimate
of the planar packing density. p; o, Which agrees closely with estimates obtained by other
investigators. The estimate is the limiting value of a formula which was shown to closely
approximate the packing densities arising from a class of discrete two-dimensional packing

schemes. This method of finding p; « differs from those used previously. It is interesting

¢

to note that the formula is of the same form as Mackenzie's formula for the class of one-

-'\"_‘

LY

dimensional analogs. Hopefully, similar simulations may be done for the three-dimensional

LN W
LN By N

case, and the limiting density obtained may be compared with the results reported in

Blaisdell and Solomon [3].
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N
. 3.1. Introduction
3
:' In Chapter 2 the time to saturation, T, was defined for a packing sequence on a

'\
A metric space (S, u) with collision criterion é. For a given packing sequence, T is just the
ka- total number of random independent selections from S, including rejections, required to
::'. achieve a state of saturation. For convenience, T will sometimes be called the packing
: :: time.
I‘
It is also possible to define another random variable associted with the process of
- _
e sequentially selecting points from the space S of a metric space (S, u). For each element
'.r-: s € S. define a coverage set A(s) such that if X is uniformly distributed over § then
Jl

P{X € A(s)} = ¢, for some ¢ > 0. A(s) can be a neighborhood of s, but this is not
necessary. Suppose that Cy,Cy, - are chosen uniformly and independently from $ and

.'

E: let 11", called the covering time, be defined by
. k
A
| W:min{kE{l,2,---}:SCUA(C,-)}.
y 1=1
; It is said that S is covered by |JI_, A(C;) for any j > W. Equivalently, it is also said that
»

] the sequence of points C1,C2,--+,C; (j 2 W) provide a covering of the space. Random
o coverage problems are abundant in the literature, see for example (7], [16], [17], (18], {19],
-

" [20], (24), [25], (40], [42), {49}, [50], [51], [54], [57], and [59].
o
:; Below, packing and covering sequences are examined on several spaces. In each space,
. coverage sets are defined so that for some choice of u and é the packing sequence corre-
3
L sponds to randomly packing the coverage sets so that members of the packed collection
‘.
’,
D) ’..
w7,

<

3

f2
p
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[ ]
. are pairwise disjoint. The distributions of the random variables T and W’ are compared
L] .
o in each case.
,;
\:
1 . .
N 3.2. The Continuous Circle
N
AN Consider the sequential random packing of arcs of length a < 1 on a circle of unit
:r; circumference. Random points C;,C>, - - - sequentially chosen from § = (0, 1] serve as the
midpoints of arcs of length a. The collision criterion, &, is set equal to a, and u is taken
e
to be the metric described in Section 1.4. For this setting, Rényi [47] has shown that
i
the expected proportion of the circle covered by packed arcs at time T approaches the
"~
constant
\ oc t
-.‘ 1 —_ p—Uu
N / exp {—2/ -—e——du} dt
e 0 0 u
s as the length of the arcs tends to zero.
L
Y s, .
X » It will now be shown that E{T] = co whenever a < §. To do this it is convenient to
" . . e . .
s first define a few terms. When a second arc is fairly packed on the circle, two gaps having
' lengths summing to 1 — 2a are formed. Let G denote the shorter of the two gaps, and let
- L denote its length. Note that L is uniformly distributed over (0, } — a).
1Y
; > Now define a random variable U as follows. If L < a,let U =0. If L > a,let U =k
d
if C is the midpoint of the first arc which is packed into G.
. Note that the first random arc will always be packed onto the circle, and that the
expected number of additional selections needed to pack a second arc onto the circle is
'.' 125:- Then given that L = z > a, the probability that a random arc is packed into G is
- just z — a. Hence, for z > a it follows that
A
. EU|L=z2]=14 ——+ — !
’ 1-2a z-a 4
. 1
g *
zT—-a U
A \
Y
P
of
]
Y
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\
W3 Clearly T > U. so that for any a < } and any ¢ between 0 and } — 2a it follows that
N
I E[T} 2 E[]
e }-a 1
R =/ EU|L =z]4——=dz
g 0 (z-¢)
A Lo
1 1
?, > / dx
. (2-0) Jaye z-a
1 1-2a
& = lo 2 .
: F-a ® ( ‘ >
v Since this inequality is true for all € € (0.3 — 2a) it follows that E{T] = >. Thus the
) following theorem has been proved for the case of a < % The proof for the remaining
.
/s values of a is similar.
i:',' Theorem 3.1. For the packing sequence of arcs of length a on a circle of unit
:: circumference. if a < { then E[T] =
o Now consider the sequential covering of the circle with random arcs of length a. and
-
- let M(a) = [a~!]. Stevens [57] determined that
-
-2 M@)o
i (3.1) P{W < k) = Z(—x)f(.)(l—ja)"-‘.
i — J
- ]_0
> and Flatto and Konheim {17] used (3.1) to show that
- M(a)
‘g . (1- lca)k 1
2 EW]=1- Z( 1) R
- and
i .\
- (3.2) EW]~alloga™® as a0
A Adopting the convention that the ratio of any finite number over infinity is equal to zero,
™ note that for any arclength a < §,
3 EW]_ o
N E[T]
- Now consider randomly packing and covering the circle with arcs of variable length.
o
- That is, suppose arc midpoints Cy,C, - - are selected from § = (0, 1] as before, and let
-
’
s
o,
f
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the arc centered on C, have random length Z,. The lengths Z,,Z,. - are taken to be

i.i.d. random variables having c.d.f. F.

The coverage problem can be described as before, only now the coverage sets
Ai={s€ S:u(sC) < Z,/2} (1=1,2,--)

have random size. The packing problem can be described as follows. The coverage set 4,
is added to the collection of packed sets if and only if it does not intersect any previously
packed member of the collection. The packed collection is considered to be saturated

whenever the probability that an additional member can be added is zero.

Siegel and Holst [51] derived an expression for the probability that the circle is com-

pletely covered by arcs of variable length. For the case of
Fiz)=1x (0<z<1),

their result mayv be written

(3.3) P{W<k}=1+ (2k _1 ,z ~1)%b;

=1

where

)
3
-
o~
o
-
>
-8
-
13
L]
"t

_ 1 k"] J | '
b= T (ml.---m,) [Tzm: + 1)

=1

P A

with the sum being over all sets of non-negative integers my,---,m, such that >_/_, m, =

k—j. For this case of random arcs having mean length 1, it may be shown that P{W{" < k}

L !

is greater than the corresponding probability for arcs of fixed length -}- This is accom-
plished by noting that the first two terms of (3.3) equals P{W < k} for the arcs of equal

length, and then showing that the sequence by, b3, - - - constitutes a monotonically decreas-

= "_‘l‘”\' g

ing sequence. It follows that E{W] < oo for the random arc lengths, since the expectation

is finite for the constant length arcs.

For F(z) = z it is clear that with probability 1 the packed set will not become

saturated. This follows from the fact that with probability 1 each newly packed arc will

n’\f_ \f\l N ,.-r_ -’fo.r_ -.'ﬁ.\,;"\-'\." .'.r -r o -' LN -r\-'._r Y r WCRC LIRS > LGN .
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be situated such that there are open gaps of positive length on both sides of it. and with

positive probability an additional arc of sufficiently small size can be packed into each gap.

Now suppose that F is such that
P{Z,' 2 a} =1

for some a@ > 0. Then it is clear that E[W] < oc since the expectation is finite in the case
of arcs having constant length a, because the arcs of variable length will cover the circle

at least as quickly as the arcs of length a do.

It is still possible to have E[T] being infinite in this case. For instance. suppose F is
the uniform distribution on (a,b), where0 < a < b < % Then with positive probability the
second arc selected will form a gap G of length L € (a,b). and given that this event occurs.
L will be uniformly distributed over (a, ). Given that L = z € (a,b). the probability that
an arbitrary arc will be packed into G is

_(z—a)?
TR A T

It then follows that the expected number of attempts required to pack the gap with an

_a)
o |

These facts are sufficient to ensure that E[T] =

arc, given that a < L < b. is

3.3. Interarrival times

Let the random variables Ty, 75, ... be defined as follows. If saturation occurs before
the kth point is added to the packed set, then Ty = co. Otherwise, Ty = j if C; is the kth
point packed.

Now define interarrival times Uy, U, -+ - by
U =T
e T A N e s e W N e N N LA SO NSNS
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A
v
’ and
Tk-—qu ika < X
: <= z
(4 o lf Tk =K. t
) Note that P{l’; = 1} = 1 and
"
t
P{U;=k}=p*'(1-p) (k=1,2,--),
\i
Xl
- where
? U
‘ p=P{CiAC;)} (G#1)
> Y For the case of packing arcs of length a on a circle of unit circumference. ]
.A E[Ul] = 11
E[LQ]: 1 - 2a (a<1/2)9
N and for a < 1/4
p: 1 \'f[ dr Pe g ‘
. T
) Uil=| = = —_—
W E(L3] (2 a) (/0 1—-3a—:r+/a 1—4a> : ‘
-3
;.. _ 2log (-}:;%) +1
% (1 - 2a)
.:: B :
i T 1-4a+a?+0(a®)
G Fora< 1/6 !
‘d. 1 -1 a 2a 3a C(I)dl‘ %—a \ '
o E[U,) = (— - a) / A(z)dz + B(z)d1:+/ +/ D(z)dx | .
¢ 2 ¢] a 2a 1-4a 3a /
where
- a d t
—(1-3a-2)! Ay
- A(z)=(1-3a - 1) (1+2/0 1_4‘1_:_!,), .
. 1-5a-1z r—a @ dy )
- —1
5 =(1- 2 —_— ],
: Bz) = (1-4a) ( 1-6a +1-3a—z+ /0 1-5a-y
:‘: 1 — 5 — a d Ir—-a d a d
" C(I)=———a_z+2</ ——y—+/ -1-—-4—!/———)4-2/ 1—32'—
A 1-6a (x_k-_g)l-3a—: a —-4a-z+4y o 1-5%5a-y
-',: and
. 1-8a v dy )
= - -1 {7 —_ ).
3 D(z) = (1 - 4a) (1—60+4/0 T—5a—3
: )
.
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112 Chapter 3: Packing Times and Covering Times

It may be shown that

E[ly) =1+ 6a+ 33a* + O(a®).

and also it is true that
1

1 - 6a+ 3a2 + O(a3)’
For k > 5. an expression for E{U] is difficult to obtain. For fixed &,

E[ty] =

1

Bl = 755 1)a + O(a?)'

however. for any particular value a < [2(k = 1)]~! the approximation

Y
1-2(k=-1)a

overestimates E[U]).
3.4. The discrete circle

Consider the sequential random packing of arcs of length ¢ on tlie discrete circle

of circumference n. Points C;.C; . --- are uniformly and independently selected from
S ={1.2,---.n}. Letting
lz -yl if [z —y[<nf2
u(r.y) = )
n - |z —y| otherwise,

two arcs with clockwise endpoints C, and C, will overlap if and only if
u(C.C)) < c.

Similarly, the circle can be sequentially covered with random arcs of length ¢ by letting

the coverage sets be given by
A(S) = {S,Se 1!" RS (C- 1)},

where the subtraction is modulo n.

Note that for ¢ = 1 the circle is packed if and only if the circle is covered. Thus the
random variables 7 and W™ have the same distribution. Since the circle is not covered

until each member of S has been selected at least one time, and because the waiting times
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o,
’,
s

between the initial occurrences of elements of S have geometric distributions. an easy
Y, argument vields that
:; n-1 n

Ew]=%" :

- mnok

It {ollows that '
j_‘: (3.4) E[W]~nlogn as n—oc.
2.
"
L Since E[W] is finite,

E(W] _ |
- ET] ~
',;: for the case of ¢ = 1. X
'l
f‘ . . . - . . . .
A The distribution of W, or equivalently of T. may be determined 1n this case by making
K use of the method of inclusion-exclusion. It is found that
-
-: n n X .i
N P{Wsk}-:Z(—l)f(.)(l—j/n) (k > n), ;
Py =0 J {
\

and further, if n is not too small. it can be seen that the approximating expression
-‘ k
a PIW < k} =~ exp(—ne~n)
Al
e does rather well (see [14). The related case with selections from § not being uniform is
Ve discussed by Flatto and Newman [18]; however, they do not obtain the distribution of If’
Vv
. exactly.
Al
"
-~ For ¢ > 2 the distributions of T and W are difficult to obtain. The determination of
- P{W > k} by a scheme analogous to Stevens' method for the continuous circle becomes
7 unwieldy due to the fact that now two or more arcs may exactly coincide with positive
’v
> probability. However, upper and lower bounds for P{W < k} and E[1¥'] may be obtained
J‘

via a method based upon an idea of Cooke [7].
‘_ Consider a circle of circumference n = c¢m for some integer m, and let G,.G3.---.Gnm
.-( be a partition of § given by
- G,={lc-1j+1(c-1)j+2.---.¢j=-l.cj} (3=1,---.m).
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Note that if S is covered by k random arcs of length c. then each set in the partition must
contain at least one clockwise endpoint C, (i € {1,---,k}). So if Wg denotes the first
time for which each member of the partition contains at least one endpoint. it follows that

W < W. This fact and the principle of inclusion-exclusion vield that
P{¥ <k} < P{W5 < k)
=S (M- amt k2 m

1=0

Note that W has the same distribution as 1" did for the case where ¢ = 1 and S =

{1,---,m}. Hence it follows that

E{W] > E[W]
m-—1
_ m
oo k

which is asymptotically equivalent to mlogm as m tends to infinitv. Since m = n/c it

follows that E{1’] has a lower bound which is asymptotically equivalent to

n n
~log— as n— .
c ¢

Now consider a circle of circumferene n = ([[<31]]) m (m € {1.2.--}). and a parti-

tion of S given by
H={(c-1)j+1,(=1)j+2.---.cj-1,c5) (G=1,---.m)

where ¢’ = [[c—i’—‘]] Note that if each set in the partition contains at least one clockwise
endpoint, then the circle is completely covered by arcs of length ¢. So if Wy denotes the
first time for which each member of the partition contains at least one endpoint, then

Wy > W. Thus

P{W <k} > P{Wy <k}

= }:(—I)J(';)(l —j/m* (k2 m),

1=0
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Section 3.4: The discrete circle

E[H']S [H’H"j‘
~_m_

m-k’
=0

This implies that E{1’} has an upper bound which is asymptotically equivalent to

n n

=] 5[] > "7

Consider again the circle of circumference n = ¢m, the partition G;,G,.---.G,.. and
the random variable 11’5 defined previously. Note that for a packing sequence of random
arcs of length c. saturation cannot occur until at least one point has been selected from
every set in the partition. Hence Wi < T and E[T] > E[W¢]). Thus E[T] has a lower

bound which is asvmptotically equivalent to

n n
—log— as n — ox.
¢ c

An upper bound for E[T] can be obtained as follows. Note that whenever an element
s € § = {1,---,n} is selected as a clockwise endpoint of an arc, either the arc will be
rejected or the arc will be added to the packed collection of arcs. If the arc is rejected.
then subsequent selections of that element s will also lead to rejection. If the arc is packed.
then subsequent selections of the same element will lead to rejection. Hence it is clear that
as soon as each element of S has been selected at least once then no further arcs will be
added to the packed collection. Letting W', denote the first time for which each element
of S has been selected at least once, it then follows that T < W,,. Thus E[T] < E[W,].

and so E{T] has an upper bound which is asymptotically equivalent to

nlogn as n — oc.

Note that the upper and lower bounds for E[WW] and E[T) do not indicate which
expectation is smaller. Since it is the case that W < T for some outcomes of C,.C,. - --
while W > T for others. a simulation study was done to see whether or not a relation like

E'W1" < E[T]seems to hold in general. 2000 trials were performed for each of the covering

\
\. .J_\ ... '- e ‘_n. ",\"4-\,",“;“)\J"'J\"}"}"}\.\\\ N, '&-\.‘.'. \‘ ). '\.‘,J, 'v‘p. - ',, .’
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” ;'
. cases. and 1000 trials were done for each of the packing cases. The results are shown in
.
. the two tables below. ‘
u
¥
b
L . ‘
' ¢ n w T
" 2 200 580.4425 785.470
"y
gne 2 300 938.2030 1307.250
[~ "
s 2 400 1311.2655 1829.266 :
2 600 2079.9205 2992.124
=
0~ 2 800 2894.2290 -
-' l
Ca
N c n 4 T :
ﬁ‘ X 300 611.3685 1006.389 '
. 3 450 979.7920 1694.828
o
D 3 600 1371.6885 2417.914
: 3 900  2174.7680  4018.000
’-
:- 3 1200 3032.0445 -
J. ¢

b

v
-

I1. every case above, it appears that E'WW] < E[T]: however, the case of n = 8

:1 ard ¢ = 2 shows that this is not true in general since there direct calculations give
- E'W = 15115 and E.T) = 147/15. It may also be seen from the results above. that for
‘ n sufficiently large. /W) appears to be proportional to
3" | 3n
.35 nlo —
B\ ¢
ar i I 1T appears to be proportional to
. 4
o | ( n ) ;
- : nlog|{—=).
B\ 2
Foogero for these observations is presented below. A few additional covering results for
.
v r=4adec= " have heen added
»
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Section 3.4. The discrete circle

¢ n H/(3.5) T/(3.6)
2 200 0.509 1.004
2 300 0.512 1.009
2 400 0.512 0.993
2 600 0.510 0.995
2 800 0.510 -

3 300 0.357 0.957
3 450 0.356 0.963
3 600 0.357 0.960
3 900 0.355 0.969
3 1200 0.356 -

4 400 0.278 -

4 600 0.278 -

4 800 0.279 -

5 500 0.225 -

5 750 0.226 -

5 1000 0.225 -

The interarrival times for adding new arcs to the packed collection are similar to
those for the continuous circle. and they provide useful anchor points for checking the

simulation programs. For the continuous case. where p = 2a, it can be shown that

E[U]]=—‘ 1.
1
ElUs) = 1
3T 1 T 2p(1 ~ p/8) + O(p?)
and
1
E[("d:

1-3p(1-p/4)+ O(p®)

[ B W
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118 Chapter 3 Packing Times and Covering Times

For the discrete circle case. where p = (2c - 1}/n.

L
-
v Ellh]=1 (n 2c), ]
’ n 1
¢ = = > (g
b E(U;) n—(2e-1) _1-p (n 2 2c),
- and for n > 4(c - 1)
S
p Elta] = = 4c+3 n 2 ik n
:: [3‘-n-(2c-l)n—(4c-2)+n—(2c—1))z=%n—(3c—l+j)' ;
," \ For ¢ = 2.3.4.5it can be shown that
N 1 :
N E{l3) = y
PN )= T —m v o) t
as was true for the continuous case. It is not unreasonable to expect that this expression
. holds for other values of ¢ as well.
\
b For ¢ = 2 it can be shown that
n
- )] =
2 Elr) n—(9-6/n)+0(n"?) : !
: B 1 :
A 1-3p(1-§p)+0(p%) )
and for ¢ = 3 it can be seen that
" d
- — n (
-, =
-, Eitd) n - (15~ 18/n) + O(n-?) )
v 1
e, = .
b 1-3p(1 - £p) + O(p?) :
N These results suggest that
- 1 ]
\
- 1-3p(1 - p/d)
~ might approximate E{T,] reasonably well for ¢ > 4 and n not too small.
<
- 3.5. Multidimensional spaces 3
.»i .
e Consider the metric spaces (Sp,un) (n = 1.2,--.), where )
]
L)
Sn= {(uy.- - un) :u, € {1.2.3}} :
- .
o 3
-
]

]
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and u, is the metric given by
MUn(x,y) = max {r, - .
( y) 1<s | T yll

These simple cubic metric spaces are equivalent to the ones described previously in section

1.8 and section 2.5. The collision criterion. §, is always taken to be 2.

The packing sequence corresponds to letting the sequence Cy,Cj.- - of points from
S, represent the centers of n-dimensional cubes of sidelength 2. The sides of these
cubes are aligned with the sides of the n-dimensional cube of sidelength 4 having ver-
tices {(uy.-++,un): u; € {0.4}}. Since two random points C; and C, collide if and only
if un(C,.C,) < 2. it follows that two points are disjoint only if their surrounding boxes of

sidelength 2 do not overlap.

The coverage sequence can be described as follows. Let U, denote the n-dimensional
cube of edgelength 4 which contains the 3" elements of S, in its interior. Then letting
A(C,) denote the box of sidelength 2 centered on C;. the covering time 11" is the smallest
integer w for which

U, = OA(C,).

=1

Note that this definition of W’ differs slightly from the one given in section 3.1. because

the space being covered. U,. is not the same as S,,.

Let S denote the set containing the 2" corner sites in U,. Thus
Sh= {(u1,+ - un) s u; € {1.3}}.

Note that U, is covered if and only if each member of S, has been selected at least one

time. Hence it follows that

-1 4,

E[u’] = Z —-——-—(2n — k)

k=0
~3"log2"” as n — oc.

Now let M, denote the number of points in a saturated packing. Note that just

before the M,th point was packed, there was at least one site available in which a point
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could be packed. Similarly, just before the (M, — 1)th point was packed there were at
least two available sites. and in general there are k + 1 or more available sites just previous

to the packing of the (Af, — k)th point.

For 0 < k < M, -1, let Z, be the number of trials required to place the (M, — k)th
packed point, and for M, < k < 2" let Z, equal TI?T"S It follows from comments above

that

3
(k+1)

Noting that 1 < M, < 27, it also follows that

E[Z] <

2n-1
T< z Zy
k=0

and so
2"-1

E[T]< ) E[Z4)
=0
2"-1 37
s é *+1)
E[W).

It is also possible to show that E[T] < E{##]and T < W almost surely. A thorough proof

of this last fact is rather tedious. but not difficult.

For 1 < n < 5 E[I¥] was calculated exactly. For 1 < n < 2, E[T] was calculated
exactly, and for 3 < n < 5 E[T) was estimated using simulation results. For 3 < n < 4.
50,000 trials were done in each case, and 10,000 trials were performed for the case n = 5.

These results are presented below.

n E[W] E[T] E[W]/E[T)
1 45 3 1.5
2 1875 10.2 1.84
3 73.38 37.60 1.95
4 2738 1423 1.92
5 9862 541.2 1.82
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Section 3.5: Multidimensional spaces 121

Cooke (7] has considered sequential coverage sequences for other multidimensional
spaces. From Miles’ results dealing with Poisson point processes (see [40] and [41]). Cooke

arrives at expressions of the form

E{(W)~ v, plogy2p as p|O0,

where p is the probability that two random points collide and 4, and 4, are constants.
It should be noted that Cooke does not offer direct proofs of some of his results, he only

claims that they are suggested by the work of Miles.
For the case of covering the unit two-dimensional torus with random disks of radius
a, it follows form one of Cooke's claims that

(3.7) EW]lx —log —

for a not too large. The accuracy of this approximation may be checked by comparing
(3.7) with simulation results for various choices of a. In the simulation runs. coverage of
the torus was checked by making sure that each crossing was covered. See [54] for details

of this method in a similar setting.

a no. trials observed (3.7)

0.25 20 23.00 14.12
0.20 20 47.80 25.62
0.15 20 97.15 53.68
0.10 10 251.6 146.6

The results above indicate that Cooke’s formula does not provide very good approxi-
mations. Thus it is probably not appropriate to make quick substitutions in results derived
for a homogeneous planar Poisson point process as Cooke did. The work of Domb [11]
also indicates that it is not trivial to obtain sequential coverage results from those derived

for a Poisson point process.

E[W] can be determined exactly in the case of covering the surface of a sphere with

random hemispheres. S is taken to be the surface of a sphere having unit radius. and
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Cy,Ca--- are the centers of spherical caps of half angle radius For this setting it

(SR}

follows as a special case of a result of Wendel [59] that
PW>k}=2"%k*-k+2) (k2>1).

Hence

E[W)

o0
1+ > 27k -k +2)
k=1

=7T.

For the related lower dimensional problem of covering a circle with hemispheres. it follows
from Wendel’s result that
o k
EW)= 1+Z<2k__1)
k=1
= 3.
The corresponding packing problems are trivial for both of these cases.

Now consider covering the surface of a sphere in 3-space with spherical caps of half
angle radius a < 3. The results of a simulation study (see [54]) indicate that P{1\" > k} is
closely approximated by a formula which is a special case of a result of Miles [40]. Letting
M (o) denote the smallest number of caps for which a covering is possible. an improved
approximation is

1 for k < M(a)
P{W >k} =
2=kk(k — 1)sin? a(l + cosa)*=? for k > M(e).
Hence it follows that
EOV) % M(a)+ 22§ k- 1) (sin? 2)
(W)= M(a)+ 2 Z (k- )(sm E)
k:M(a)

sina . a\M(e)-2
~ M(a) [1+ n M(a) (sm 5) ] as a|0.

It should be noted that M(a) is not easy to determine in general.

The distributions of T for packing sequences on spherical surfaces and tori are difficult
to determine. For the packing of n-dimensional cubes in an n-dimensional torus, a straight-
forward extension of the argument for the one-dimensional case yields that E[T] = o

provided that the cubes are not too large.
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Lo Ul S ™

3.6. Summary

>

Although covering problems are abundant in tle literature, sequential covering results

concerning E[W] have been considered by only a few authors, including Flatto and Cooke.

LRSS

Similarly, results concerning T haven't been previously developed even though numerous

investigators have studied random packing densities.

Among the results in this chapter. it has been shown that the ratio E{W1/E[T] can

L3 T R S P

be equal to zero, less than one, equal to one, or greater than one. The ratio is equal to
zero for the continuous circie since £'T' = x. For the discrete circle. the ratio equals one
) if ¢ = 1. and is less than one if ¢ > 2 and n is not too small. The ratio exceeds one in the A

simple cubic case discussed in the previous section.
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SR TR

Appendix A: Packing by Hamming Distance

M is the number of words in a saturated packing of g-ary codewords of length n

having minimum allowable interword distance d.

g n d E(XM)  Var(M) # trials
2 3 2 3.493200 0.756829 10000
2 4 2 6.203800 2.815747 10000

2 5 2 11.0%08%00 6.951967 10000
2 3 3 3.879800 0.225975 10000

2 6 2 20.171000 14.521211 10000
2 6 3 6213600 0.704846 10000
2 6 4 3.363600 0.8678%2 10000
2 7 2 37.082400 27.182128 10000
2 T 3 9.93%700 1.191661 10000
2 7 4 5139200 1.673591 10000 ,
2 & 2 08299800 50.970457 10000 ,
2 & 3 16.461900 0.758824 10000
9 8 4 8237700 2.514233 10000 ;
2 8 5 3.810200 0.343610 10000 -
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129.102400
28.378700
13.091700

4.861000
3.288600

242.240800
49.495400
21.141000

7.588200
4.434000

457.204000
87.313000
34.859000
11.676000

6.417000
3.782000

867.509000
155.635000
58.842000
18.122000
9.853000
3.986000
3.310000

98.656380
1.705657
4.987190
1.020781
0.916802

168.855301
3.106489
10.550774
0.738095
0.916536

310.400785
5.254285
21.638758
0.655680
1.654766
0.388865

558.192111
9.639414
47.304340
0.956072
2.429821
0.027832
0.904805
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13
13
13
13
13
13
13

14
14
14
14
14
14
14
14

P BN . R e ]

M

"

Ll AR

2  1653.710000 959.137273
3 279.360000 22.394343
4 98.880000 116.328889
5 28.770000 1.451616
6 15.040000 4.705455
T 6.060000 0.279192
& 3.960000 0.079192
2 3153.140000 1373.091313
3 504.080000 27.872323
4 170.270000 243.128384
5 46.490000 2.131212
6 22.720000 10.203636
7 9.050000 0.634040
8 5.040000 1.048889
9 3.660000 0.570101
2  6029.100000 3039.525253
3 918.130000 45.280404
4 206.880000 471.056162
3 75.600000 3.474747
6 35.450000 16.654040
T 13.810000 0.620101
8 7.720000 1.880404
9 4.000000 0.000000
10 3.200000 0.969697
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100 .
100 I
100 )
100
100
100
100 "
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100
100
100 3
100
100
100 ‘
100 ‘
100
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100
100
100
100
100
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100
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11585.050000
1675.980000
513.730000
124.400000
55.270000
20.340000
11.640000
5.300000
3.920000

NN NN

22306.100000
3074.400000
895.500000
207.600000
86.600000
29.700000
17.300000
7.000000

4 200000
3.400000

345.700000
147.500000
45.700000
25.700000
10.300000
6.600000
4.000000

ey S AT T A A AT S

5824.371212
104.302626
1140.300101
4.606061
31.855657
1.297374
3.424646
1.080808
0.155152

14989.211111
291.155556
3013.166667
5.155556
65.600000
1.344444
4.011111
1.111111
0.400000
0.868966

14.233333
249.166667
2.011111
10.455556
0.455556
0.933333
0.000000

.‘ o

L S SRR R

SRR

-

o JEIP L A

A

KA A A AP

-
g )

X




R g
1

Appendix 133

) 2 19 9 15.800000 0.844444 10
19 10 8.500000 2.055556 10
2 19 11 5.000000 1.111111 10

.“l‘l'i - - ey .,'-< LR ST .{-{.

[g%]

20 10 13.800000 2.400000 10
s 2 20 11 6.400000 0.711111 10

3 3 2 7.474000 0.935792 2000

3 4 2 19.761500  2.621929 2000
3 4 3 6.222000 0.842137 2000

y 3 5 2 52.8117333 R.612435 1500

: 3 5 3 11.976000 0.616732 2000
3 5 4 4.280000 0.908509 1000

' 3 6 2 142.937000 22.635667 1000

3 6 3 28.155333 1.626956 1500

s 3 6 4 9.509000 0.614334 1000
3 6 5 3.488000 0.250106 1000

3 7 2 392.005000 73.629899 200

3 7 3 68.813000 4.472504 1000

3 7 4 20.812000 1.492148 1000

3 7 5 7.384000 0.555099 1000

3 7 6 3.000000 0.000000 1000
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W W W W W W W W W W W W

W W w W

oo 0o 0o 00 00 00

O W O ©w © ©

10
10
10

11
11

1086.650000
170.770000
46.851000
15.295000
6.125000
3.000000

3038.200000
435.040000
108.394000

31.187000
11.759000
5.289000

253.100000
66.700000
22.900000

9.100000

46.600000
17.700000

13.390000

46.608000
11.035692

S-_'\"I ..f-.f"f‘\f\-"‘n'\f

225.603535
9.593030
2.705505
0.706682
0.169545
0.000000

491.326316
29.957980
7.145910
1.667699
0.629549
0.780259

18.100000
3.788889
0.766667
0.544444

S
N W
i}
-1
-~
-1

1.283221

4.988666
0.94794%

100
100
1000
1000
1000
1000

20
100
1000
1000
1000
1000

10
10
10

10

10
10

4000
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e
o 4 5 165.513333  19.055703 1200
e 4 5 3 30464200  2.446511 2500
-
:Z 4 5 4 8.316000  0.431621 3000
4 6 2 597.522730 87.982516 220
4 3 91.980800  5.232618 1250
4 4 22.189091  1.263571 1100
e 4 T 2 2172.600000 527.410526 20
\'\
s 4 7T 3 293.000000 18.621622 75
M
N 4 T 4 62960000 3.412525 100
N
- 5 3 2 20.997300  1.506247 2000
*
o
i 5 4 2 91.401000  7.225424 1000
5 4 3 17.402000  0.945341 1000
&:
! 5 5 2  405.015000 47.411839 200
N
~ 5 5 3 62.226000  4.788501 500
> 5 5 4 14.246000  1.272757 1000
-~
-
- 5 2 1823.800000 187.536842 20
:-:: 5 3 233.180000 16.803673 50
A 5 6 4 43.940000  2.056970 100
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'

Appendix B: Packing by Lee Distance

M denotes the number of words in a saturated packing of g-arv codewords of length

AS n with minimum allowable interword distance d.

d E(Af) Vaer(M) # trials

]
L~}
3

ey s, .'\ .\ “- * ".

2 20.074583 13.625545 2400
2 68.965417 54.404343 2400
2 242.035000 147.532607 400
2
2

v Sl
P %

P A 2 R

(=2

869.071429 542.006763 140
3165.300000 2106.900000 10

MO S T

-

16.467500 0.763686 4800
49.406250 3.092577 800
155.525000 10.228763 280
502.900000 18.936842 20
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Cases having n = 2 "
2
d ¢ i # trials :‘_
2 10 0.3652 1000 "
2 20 03642 1000 N
2 30 0.3631 500 ‘
Lo?.

2 40 0.3646 100 ”
2 50 0.3644 100 X
2 55 0.3646 100 .
2 60 0.3645 100 R
:

¥

3 20 0.1397 1000 )
3 30 0.1395 500 R
3 40 0.139 200 "
t
3 50 0.139% 200 0
o

3 55 0.1399 100 \
[y

. 3 60 0.1397 100 .
3 65 0.1398 100 N
3 70 0.1398 100 .
4 30 008027 1000 2
4 40 0.08032 500 2
4 50 0.08015 500 o
Fu

4 55 0.08023 200 ,
4 60 0.08028 200 ';'
4 65 0.08020 100 )
4 70 0.08020 100 73
4 75 0.08034 100 v
N

0

)

’l

o

",

1.

o

.l

~

Y

N
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)
5 40 0.04902 1000 :
5 50 0.048934 500 R
5 60 004917 200 .-
5 70 0.04900 200 '-
5 75 0.04915 200 "
5 80 0.04896 100 o
5 85 0.04898 100 X
5 90 0.04897 100 ;
5 95 0.04908 100 ~;';.
0
6 50 0.03416 1000 A
6 60 003415 500 ,
6 70 0.03418 200 5
6 80 003415 200 :
6 90 003417 100
6 95 0.0340s 100 N
7 60 0.02448 100 G
7 70 0.02453 100 E_;
7T 80 0.02451 100 ‘
790 0.02456 100 R
7 100 0.02452 100 "-
:
8 80 001885 100 »
8 90 001881 100 -
8 100 0.01885 100
& 110 0.01882 100
8 120 0.01879 100 -
'3
A
’
g
"
¥
'0
o

o

; - ~ - - ; . ) W - . - . . 1
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10
10
10
10
10

11
11
11
11
11

12
12
12
12
12
12
12

W . S O T R

+'® A »

100
105
110
115
120
125

130

115
120
125
128
130
132

—
N
S

—
o
o0 O

132

125
126
127
128
129
130
131

132

o N e Lt NG L e N e e N e
K Xal 0 DXt K

0.0146%
0.014658
0.01466
0.01471
0.01462
0.01465
0.01467

001183
0.01189
0.01186
0.0118%
0.011R86
0.01187

0.009722
0.009703
0.009723
0.009733
0.009728

0.008162
0.008154
0.008188
0.008165
0.008204
0.008178
0.008161
0.008194

100
100
100
100
100
100
200

200
200
200
200
200
200

200
200
200
200
200

100
100
100
100
100
100
100
100
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Appendix C: Packing Square Boxes

g is the average proportion of a ¢ by ¢ torus shaped lattice covered by a saturated
packing of d by d blocks.

,a"/‘ /. .li.lf 'br.:..t.'f.‘r\r [ 4 f.l w‘,‘r".lﬁ ;a‘;a’s. x"\':.'_'.

d q P # trials

-

v

2 23 0.7471 100 i“
2 26 0.7433 100 AR
2 29 0.7482 100 SE
2 32 0.7496 100 "
2 35 0.7470 100 o
»
;l-
.,
3 35 0.6786 100 ~4
3 40 0.6807 100 :
3 45 0.678&> 100 i
3 50 0.6817 100 '\
3 55 0.6774 100 <
v
4 60 0.6488 100 I
4 65 0.6498 100
*
4 70 0.6484 100 >
4 75 06479 100 b
hd
4 80 0.6467 100
’
LY
‘I
5 80 0.6328 100 N
5 90 0.6304 100 g;
5 100 0.6280 100 ¥
5 110 0.6284 100 .
»
5 120 0.6307 100 -
:w'
.-'
o,
.’i
»
I'“.
g
o
‘
o
o~
< .-\
‘
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6 105 0.6163 100 R
6 110 0.6200 100 e,
i

6 115 0.6174 100 >
6 120 0.6176 100 |
S

6 125 06166 100 ]
iy

-

Y

7 113 0.6097 100 o~
T 116 06101 100 »
- - ‘:',0'
T 119 0.605T 100 "
h

;122 0.6095 100 hr
T 125 0.6050 100 N
®

I,

112 06031 100 ;:
& 117 0.6032 100 v
8 122 0.6015 100 N
& 127 0.6035 100 “ »
& 132 0.6031 100 o
9 120 0.6017 100 R
9 123 0.5994 100 b
9 126 0.6005 100 -
A

9 129 0.6003 100 K
9 132 0.5976 100 e
»
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Appendix D: Complementary Codes

n is the word length

A(n.d) and K are defined in Section 2.6

mean is the average number of words randomly packed

7 is the observed center density

r

done by the method of Section 2.2

n K-{n} Aind)

4 2 &
5 2.3 16

. 6 3 8
6 2.4 32
6  2.3.4 32
T 3.4 16
n 2.5 64
T 2345 64
8 4 16
8 35 20
& 345 20
8 2,6 128
8 246 128
& 23,56 128
8 234,56 128

W A7 BT LA RIS I ] L PR

A I i L T e e N e e e e T

nax

17 )

128
26
128

min mean T
8 8.000 0.500
8 9.344 0.292
4 4.000 0.063
32 32,000 0.500
12 21.868 0.342
16 16.000 0.125
& 12.805 0.100
16  35.875 0.2%0
16 16.000 0.063
4 4.000 0.016
16 16.000 0.063
8 14.616 0.057
128 128.000 0.500
16 23.784 0.093
52 69.631 0.272
S P,

s W « Pre Py

max is the number of words in the largest randomly formed code

min is the number of words in the smallest randomly formed code

is the observed center density for the corresponding case where the packing was

0.388
0.346
0.097
0.315
0.315
0.078
0.290
0.290
0.032
0.064
0.064
0.269
0.269
0.269
0.269
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& 9 4.5 20 16 16 16.000 0.031 0.026

E 9 3.6 40 8 8 8.000 0.016 0.055

J'.,: 9 3.4.56 40 32 20 24.995 0.049 0.055

; 9 2.7 256 18 8 16.522 0.032 0.252

= 9 2.3.6.7 256 18 8 17.006 0.033 0.252

f:: 9 2.4.5.7 256 74 32  50.684 0.099 0.252

o 9  23,4.56.7 256 158 98 128.318 0.251 0.252

o 10 5 12 4 4 4.000 0.004 0.007

j 10 4.6 40 32 20 24998 0.029 0.021

o 10 4.5.6 10 28 4 9620 0.009 0.021
3':: 10 3.7 [72.79] 4 4 4.000 0.004 0.04%

N 10 3.5.7 [72.79] 4 4 4.000 0.004 0.048

N 10 3.4.6.7 [72.79) 32 16 25475 0.025 0.04%

i 10 3.4,5.6.7 [72.79] 52 42 47.260 0.046 0.048

- 10 2.8 512 20 & 18457 0.018 0.237
N 10 2378 512 20 S 18234 0018 0237

. 10 2.5.8 512 20 8 17.540 0.017 0.237

:'j 10 2.4,6.8 512 512 512 512.000 0.500 0.237

~ 10 2.3.5.7.8 512 40 6 35.031 0.034 0.237

" 10 2.3.4.6.7.8 512 512 32 316.110 0.309 0.237
G 10 23.56.8 512 312 36 316.583 0.309 0.237

f— 10 2.3.4.56.7.%8 512 34% 212 240.520 0.235 0.237

o
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'
4 11 5.6 24 24 & 23.760 0.012
‘
o 11 4.7 [72,79] 16 10 15.784 0.008
) 11 4.56,7 (72,79] 32 24 27.620 0.013
- 11 3.8 [144,158) 4 4  4.000 0.002
- 11 34,78 [144.158) 32 32 32.000 0.016
= 11 3568 [144.158) 18 12 15.280 0.007
- 11 3.4.5,6.7.8  [144,158] 104 84 92.060 0.045
11 2.9 1024 22 8 20.426 0.010
A 11 2.3.8.9 1024 22 8 20.064 0.010
Ly 11 2.4.7,9 1024 112 32 73.250 0.036
| ]
.\. 11 2.5.6.9 1024 24 8 20.921 0.010
)
11 2.34.789 1024 112 16 42.261 0.021
z{ 11 2.3.5.6.89 1024 58 22 35415 0017
] 11 2456.79 1024 314 92 189.442 0.093
Wt
< 11 2,34.5.6.7.89 1024 530 426 460.100 0.225
-~
3 12 6 24 24 8 23.680 0.006
SN 12 5.7 32 4 4 4000 0.001
- 12 5.6.7 32 24 18 21.810 0.005
- 12 4.8 [144.138) 32 32  32.000 0.008
") 12 45.7.8 (144.158] 64 20  34.020 0.008
- 12 4,6.8 [144,158] 104 &0 91.950 0.022
K
N 12 4.56.7.8  [144.158) 96 40 62.000 0.015
~
N
¥
{I
)
e )
'I
,.
S
o
N
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ol of Tl £ SRl ."-.'.-"\"' Qs ;

T

12 3.9 256 4 4 4000 0.001 0.03%
12 3.4.59 256 32 12 25.120 0.006 0.038 :
12 3.6.9 256 24 16  20.520 0.005 0.038 '
12 3.5.7.9 256 4 4 4000 0.001 0.038 '
12 3.4.6.8.9 256 106 12  78.620 0.019 0.038 "
12 3.4.5.7.89 256 64 44 58606 0.014 0.038 ’:
12 3.5.6.7.9 256 4% 30  45.090 0.011 0.03S e
12 3.4.5.6.789 256 168 146  157.632 0.038 0.038 '\
12 2.10 2048 24 8 2238  0.005 0.212 i
12 2.3.9.10 2048 24 &  22.060 0.005 0.212 ;;:
12 2.6.10 2048 24 16  22.440 0.005 0.212 I
12 2,4.8.10 2048 134 20  58.040 0.014 0.212 \
12 2.3.6.0.10 2048 26 & 22544  0.006 0.212 ;- "
12 2.3.4.8.9.10 2048 134 16  57.173 0.014 0.212 f;
. 12 2.5.7.10 2048 38 16  34.690 0.008 0.212 A
12 2.4.6..10 2048 2048 2048 2048.000 0.500 0.212 .
12 23.579.10 2048 48 16  43.473 0.011 0.212 r
12 2.3.4.6.8.9,10 2048 2048 30 1683.946 0.411 0.212 ’
12 2457510 2048 116 30  59.549 0.015 0.212 %
. 12 2.5.6.7.10 2048 36 20 27.690 0.007 0.212 8
12 2.3.4.5.7.89.10 2048 240 46 110.170 0.027 0.212 E
12 2.3.56.79.10 2048 48 32 43.940 0.011 0.212 N
12 24567810 204% 2048 128 823.857 0.201 0.212 N
12 23.4,5.6,7,8.0.10 2048 1120 796 867.528 0.212 0.212 '
%
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5

Densest packing schemes .

A &

n d K-{n} 7 re e
4 2 2 0.500 0.388 L
s

5 2 23 0.292 0.346 -
o

6 3 3 0.063 0.097 3
6 2 2,4 0.500 0.315 )
7 3 3,4 0.125 0.078 r
T2 2345 0.280  0.290 &
8 4 4 0.063 0.032 N
g 3 34,5 0.063 0.064 J',
8 2 246 0.500 0.269 3
9 4 4.5 0.031 0.026 :x
9 3 3456 0.049  0.055 N
9 2 234567 0251 0.252 -
>

10 3 5 0.00¢ 0.007 >
10 4 46 0.024 0.021 ]
10 3  3.4,56.7 0.046 0.048 o
10 2 2468 0.500 0.237 E',;
11 5 5,6 ©0.012  0.006 !\
11 4 4567 0013 0.017 N
M

11 3 3,456,578 0.045 0.043 =]
11 223456789 0225 0.223 -~
o

12 6 6 0.006 0.002 b
o

12 5 56,7 0.005 0.004 T
12 4 468 0.022 0.014 o
12 3 3,456,789 0038 0.038 E:
12 2 246810  0.500 0.212 »
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